• Title/Summary/Keyword: 위성레이더

Search Result 304, Processing Time 0.043 seconds

Application of AI technology for various disaster analysis (다양한 재해분석을 위한 AI 기술적용 사례 소개)

  • Giha Lee;Xuan-Hien Le;Van-Giang Nguyen;Van-Linh Ngyen;Sungho Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.97-97
    • /
    • 2023
  • 최근 재해분야에서 인공신경망(ANN), 기계학습(ML), 딥러닝(DL) 등 AI 기술이 활용성이 점차 증가하고 있으며, 센싱정보와 연계한 시설물 안전관리, 원격탐사와 연계한 재해감시(녹조, 산사태, 산불 등), 수문시계열(수위, 유량 등) 예측, 레이더·위성강수 자료의 보정과 예측, 상하수도 관망누수예측 등 다양한 분야에서 AI 기술이 적용되고 그 활용성이 검증된 바 있다. 본 연구에서는 ML, DL, 물리기반신경망(Pysics-informed Neural Networks, PINNs)을 이용한 다양한 재해분석 사례를 소개하고, 그 활용성과 한계에 대해서 논의하고자 한다. 주요사례로는 (1) SAR영상과 기계학습을 이용한 재해피해지역(울진 산불) 감지, (2) 국가 디지털 정보를 이용한 산사태 위험지역 판별(인제 산사태) (3) 기계학습 및 딥러닝 기법을 이용한 위성강수 자료의 보정·예측 및 유출해석, (4) 수리해석을 위한 수치해석분야에서의 PINNs의 적용성(1차원 Saint-Venant 식 해석) 평가 연구결과를 공유한다. 특히, 자료의 입·출력 자료만으로 학습된 인공신경망 모형 대신 지배방정식(물리방정식)을 만족하도록 강제한 PINNs의 경우, 인공신경망 모형보다 우수한 모의능력을 보여주었으며, 향후 복잡한 수리모델링 등 수치해석분야에서 그 활용가능성이 매우 높을 것으로 판단된다.

  • PDF

Mutual Adjustment of Oceanographic Measurements from leodo Station and Satellite Data (원격탐사자료와 이어도기지 해양관측자료를 이용한 상호 보정)

  • Kim Chang-Oh;Shim Jae-Seol;Hwang Jong-Sun;Lee Jae-Hak;Kim Soodung;Kim Jeong Woo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.113-120
    • /
    • 2005
  • Oceanographic measurements from Ieodo Ocean Research Station and its vicinity were compared for assessment and mutually adjusted with satellite data. From the Topex/Poseidon and ERS-1/2 radar altimeter and scatterometer data, sea surface height, wind speed and direction were extracted and analyzed. Shipborne wind direction data acquired in June 1995 show good coherence with the satellite data, while sea surface height and wind speed show differences, possibly resulting from the distance between the measurement points. This can be improved by analyzing more satellite data or using other available shipborne data. The recent 3 months of Ieodo Station data between December 2004 and February 2005 were also analyzed and compared with the satellite data. The Ieodo Station data were found to have considerable gaps during the period as well as seriously biased particular when the data were averaged with some abnormal data. The Ieodo Station and satellite data were then mutually adjusted on the basis of their statistics. Ieodo Station oceanographic measurements are very efficient for ground-frothing of satellite data because they are stationary and the station is located far from the coast. On the other hand, the satellite measurements are the only data to fill up gaps and adjust biases of the Ieodo Station data.

Analysis of Co- and Post-Seismic Displacement of the 2017 Pohang Earthquake in Youngilman Port and Surrounding Areas Using Sentinel-1 Time-Series SAR Interferometry (Sentinel-1 시계열 SAR 간섭기법을 활용한 영일만항과 주변 지역의 2017 포항 지진 동시성 및 지진 후 변위 분석)

  • Siung Lee;Taewook Kim;Hyangsun Han;Jin-Woo Kim;Yeong-Beom Jeon;Jong-Gun Kim;Seung Chul Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.19-31
    • /
    • 2024
  • Ports are vital social infrastructures that significantly influence both people's lives and a country's economy. In South Korea, the aging of port infrastructure combined with the increased frequency of various natural disasters underscores the necessity of displacement monitoring for safety management of the port. In this study, the time-series displacements of Yeongilman Port and surrounding areas in Pohang, South Korea, were measured by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to Sentinel-1 SAR images collected from the satellite's ascending (February 2017-July 2023) and descending (February 2017-December 2021) nodes, and the displacement associated with the 2017 Pohang earthquake in the port was analyzed. The southern (except the southernmost) and central parts of Yeongilman Port showed large displacements attributed to construction activities for about 10 months at the beginning of the observation period, and the coseismic displacement caused by the Pohang earthquake was up to 1.6 cm of the westward horizontal motion and 0.5 cm of subsidence. However, little coseismic displacement was observed in the southernmost part of the port, where reclamation was completed last, and in the northern part of the oldest port. This represents that the weaker the consolidation of the reclaimed soil in the port, the more vulnerable it is to earthquakes, and that if the soil is very weakly consolidated due to ongoing reclamation, it would not be significantly affected by earthquakes. Summer subsidence and winter uplift of about 1 cm have been repeatedly observed every year in the entire area of Yeongilman Port, which is attributed to volume changes in the reclaimed soil due to temperature changes. The ground of the 1st and 2nd General Industrial Complexes adjacent to Yeongilman Port subsided during the observation period, and the rate of subsidence was faster in the 1st Industrial Complex. The 1st Industrial Complex was observed to have a westward horizontal displacement of 3 mm and a subsidence of 6 mm as the coseismic displacement of the Pohang earthquake, while the 2nd Industrial Complex was analyzed to have been little affected by the earthquake. The results of this study allowed us to identify the time-series displacement characteristics of Yeongilman Port and understand the impact of earthquakes on the stability of a port built by coastal reclamation.

RCS Extraction of Trihedral Corner Reflector for SAR Image Calibration (SAR 영상 보정용 삼각 전파 반사기의 정확한 RCS 추출)

  • Kwon, Soon-Gu;Yoon, Ji-Hyeong;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.9
    • /
    • pp.979-986
    • /
    • 2010
  • This paper presents an algorithm for retrieving precise radar cross sections(RCS) of various trihedral corner reflectors (TCR) which are external calibrators of synthetic aperture radar(SAR) systems. The theoretical RCSs of the TCRs are computed based on the physical optics(PO), geometrical optics(GO), and physical theory of diffraction(PTD) techniques; that is, the RCS computation includes the single reflections(PO), double reflections(GO-PO), triple reflections(GO-GO-PO), and edge diffractions(PTD) from the TCR. At first, we acquire an SAR image of the area that five TCRs installed in, and then extract the RCS of the TCRs. The RCSs of the TCRs are extracted accurately from the SAR image by adding up the power spill, which is generated due to the radar IRF(Impulse Response Function), using a square window. We compare the extracted RCSs with the theoretical RCSs and analyze the difference between the theoretical and experimental RCSs of the TCR for various window sizes and various backscattering coefficient levels of the adjacent area. Finally, we propose the minimum size of the integration area and the maximum level of the backscattering coefficients for the adjacent area.

Case Study of Oil Spill Monitoring Caused by Maritime Casualties Using Satellite Data in 2014 (해양사고에 의한 유출유 모니터링 사례 소개와 향후 방향)

  • Yang, Chan-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.79-80
    • /
    • 2014
  • Most of marine pollution have been occurred by oil spill accidents resulted from ship accidents in South Korea. This year there were two large oil spill accidents: the Yeosu Oil Spill Accident (2014.01.31.(Fri.) 09:35 LT) and the Captain Vangelis L. Oil Spill Accident (2014.02.15.(Sat.) 14:00 LT). In general, Synthetic Aperture Radar (SAR) is used in monitoring and detection of oil dumping and spilled oils by accident at sea. Therefore it is expected that KOMPSAT-5, launched successfully last year, will take part in that mission during a normal operation mode. After the two accidents, high spatial resolution optical satellite data including KOMPSAT-3 were acquired February 2 and 14, 2014. In this presentation, we analyzed optical properties of spilled oils from optical satellite imagery to estimate the spilled area and the volume at each region. Finally, a satellite application planning for ocean surveillance in South Korea will be presented.

  • PDF

Interannual Changes of Bar Morphology in the Han River Estuary Using Satellite Imagery (인공위성에 의한 한강 하구역 퇴적상 경년 변동 특성 조사)

  • Yang, Chan-Su
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.11a
    • /
    • pp.57-60
    • /
    • 2007
  • The Han River is divided into North and South Korea by NLL(Northern Limit Line) and its area has been blocked by CCL(Civil Control Line) since the Korean War in 1950. Satellite remote sensing, therefore, is uniquely suited to monitoring bar transformation in the region. In river with bar, the characteristics of its physical conditions have a close relationship with bar morphology. In this paper, a monitoring approach of bar transformation in the Han River Estuary is presented using RADARSAT/SAR images from 2000 to 2005 and spatial patterns of bar morphology are presented. It could be said that in the estuary vegetated area and natural levees are developed well, but bars are shifted after an event like a flood. It is also showed that suspended solids such as silt transported through the estuary could contribute highly to a sedimentation environment around Incheon.

  • PDF

A Study on Variable Conductance Radiator using Liquid Metal for Highly Efficient Satellite Thermal Control (인공위성의 고효율 열제어 구현을 위한 액체금속형 가변 전도율 방열판에 관한 연구)

  • Park, Gwi-Jung;Go, Ji-Seong;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.2
    • /
    • pp.66-72
    • /
    • 2019
  • The observation satellites which uses high heat-dissipating equipment such as synthetic aperture radar (SAR) satellites require a radiator to transmit heat from the equipment into outer space. However, during cold conditions it requires a heater to maintain the temperature of equipment within the allowable minimum limit when it is not in operation. In this study, we proposed a variable conductivity radiator that changes its thermal conductivity value through movement of the liquid metal between two reservoirs based on the temperature condition. This reduces the power consumption of the heater by limiting heat transfer path to the radiator in cold condition, while effectively transferring heat to the radiator during hot condition. The feasibility of the proposed radiator was validated through comparison of the thermal control performance with the conventional fixed conductivity radiator via a thermal analysis.

Estimation of equivalent rainfall by water level for Hwanggang dam in North Korea using hydrological model calibrated based on satellite images (인공위성 영상을 기반으로 보정된 수문모형을 이용한 북한 황강댐 수위별 상당강우량 산정)

  • Kim, Jin Gyeom;Hwang, Euiho;Kang, Kimook;Yu, Wansik;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.291-291
    • /
    • 2022
  • 북한의 황강댐은 우리나라와 북한이 공유하고 있는 대표적인 하천인 임진강 상류에 존재하는 댐으로서 팔당댐의 약 1.5배의 규모를 가지고 있으며, 하류로의 발전방류와 함께 유역 외 지역인 예성강 지역으로 방류량의 일부를 도수시키며 이를 통해 예성강 1, 2호 발전소에서의 발전을 실시하고, 생활, 공업, 농업용수를 예성강 유역에 공급하는 것으로 파악된다. 2009년 9월 6일 임진강 상류 황강댐에서의 대규모 방류로 인해 경기도 연천군 일대에 홍수가 발생하였으며 이로 인한 인명 및 재산피해가 발생한 바 있다. 이에 우리나라에서는 임진강 하류에 군남홍수조절지를 설치하고 상류의 필승교 수위표를 이용하여 홍수경보체제를 운용하고 레이더 강우와 수문모형을 이용한 감시체계를 유지하고 있으나 황강댐 운영현황이 불확실함에 따라 정확한 예보가 어려운 실정이다. 본 연구에서 미계측 지역의 홍수예보를 위해 산정한 상당상수량이란 저수지의 현재 수위로부터 특정 수위까지 도달하는데 요구되는 강우량을 말하며 강우예보 시점에서 저수지의 최대 수위를 신속하게 파악할 수 있는 홍수예경보 수단이다. 미계측 유역인 임진강 상류 황강댐 유역의 상당강우량을 산정하기 위해 인공위성영상에서 획득한 댐 수위의 시계열 자료를 활용하여 간접적으로 보정된 황강댐 상류의 수문모형을 이용하였으며 현재 댐 수위로부터 주요 수위(방류개시수위, 상시만수위, 계획홍수위)에 도달하게 되는 상당강우량을 산정하였다.

  • PDF

Research Trends on Estimation of Soil Moisture and Hydrological Components Using Synthetic Aperture Radar (SAR를 이용한 토양수분 및 수문인자 산출 연구동향)

  • CHUNG, Jee-Hun;LEE, Yong-Gwan;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.26-67
    • /
    • 2020
  • Synthetic Aperture Radar(SAR) is able to photograph the earth's surface regardless of weather conditions, day and night. Because of its possibility to search for hydrological factors such as soil moisture and groundwater, and its importance is gradually increasing in the field of water resources. SAR began to be mounted on satellites in the 1970s, and about 15 or more satellites were launched as of 2020, which around 10 satellites will be launched within the next 5 years. Recently, various types of SAR technologies such as enhancement of observation width and resolution, multiple polarization and multiple frequencies, and diversification of observation angles were being developed and utilized. In this paper, a brief history of the SAR system, as well as studies for estimating soil moisture and hydrological components were investigated. Up to now hydrological components that can be estimated using SAR satellites include soil moisture, subsurface groundwater discharge, precipitation, snow cover area, leaf area index(LAI), and normalized difference vegetation index(NDVI) and among them, soil moisture is being studied in 17 countries in South Korea, North America, Europe, and India by using the physical model, the IEM(Integral Equation Model) and the artificial intelligence-based ANN(Artificial Neural Network). RADARSAT-1, ENVISAT, ASAR, and ERS-1/2 were the most widely used satellite, but the operation has ended, and utilization of RADARSAT-2, Sentinel-1, and SMAP, which are currently in operation, is gradually increasing. Since Korea is developing a medium-sized satellite for water resources and water disasters equipped with C-band SAR with the goal of launching in 2025, various hydrological components estimation researches using SAR are expected to be active.

Downscaling GPM Precipitation Using Finer-scale MODIS Based Optical Image in Korean Peninsula (MODIS 광학 영상 자료를 통한 한반도 GPM 강우 자료의 상세화 기법)

  • Oh, Seungcheol;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.749-762
    • /
    • 2020
  • Precipitation is closely related to various hydrometeorological phenomena, such as runoff and evapotranspiration. In Korean Peninsula, observing rainfall intensity using weather radar and rain gauge network is dominating due to their accurate, intuitive and precise detecting power. However,since these methods are not suitable at ungauged regions, rainfall detection using satellite is required. Satellite-based rainfall data has coarse spatial resolution (10 km, 25 km), and has a limited range of usage due to its reliability of data. The aim of this study is to obtain finer scale precipitation. Especially, to make the applicability of satellite higher at ungauged regions, 10 km satellite-based rainfall data was downscaled to 1 km data using MODerate Resolution Imaging Spectroradiometer (MODIS) based cloud property. Downscaled precipitation was verified in urban region, which has complex topographical and environmental characteristics. Correlation coefficient was similar in summer (+0), decreased in spring (-0.08) and autumn (-0.01), and increased in winter (+0.04) season compared to Global Precipitation Measurement (GPM) based precipitation. Downscaling without calibration using in situ data could be useful in areas where rain gauge system is not sufficient or ground observations are rarely available.