• Title/Summary/Keyword: 위성데이터링크

Search Result 98, Processing Time 0.032 seconds

Conjunction Assessments of the Satellites Transported by KSLV-II and Preparation of the Countermeasure for Possible Events in Timeline (누리호 탑재 위성들의 충돌위험의 예측 및 향후 상황의 대응을 위한 분석)

  • Shawn Seunghwan Choi;Peter Joonghyung Ryu;John Kim;Lowell Kim;Chris Sheen;Yongil Kim;Jaejin Lee;Sunghwan Choi;Jae Wook Song;Hae-Dong Kim;Misoon Mah;Douglas Deok-Soo Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.2
    • /
    • pp.118-143
    • /
    • 2023
  • Space is becoming more commercialized. Despite of its delayed start-up, space activities in Korea are attracting more nation-wide supports from both investors and government. May 25, 2023, KSLV II, also called Nuri, successfully transported, and inserted seven satellites to a sun-synchronous orbit of 550 km altitude. However, Starlink has over 4,000 satellites around this altitude for its commercial activities. Hence, it is necessary for us to constantly monitor the collision risks of these satellites against resident space objects including Starlink. Here we report a quantitative research output regarding the conjunctions, particularly between the Nuri satellites and Starlink. Our calculation shows that, on average, three times everyday, the Nuri satellites encounter Starlink within 1 km distance with the probability of collision higher than 1.0E-5. A comparative study with KOMPSAT-5, also called Arirang-5, shows that its distance of closest approach distribution significantly differs from those of Nuri satellites. We also report a quantitative analysis of collision-avoiding maneuver cost of Starlink satellites and a strategy for Korea, being a delayed starter, to speed up to position itself in the space leading countries. We used the AstroOne program for analyses and compared its output with that of Socrates Plus of Celestrak. The two line element data was used for computation.

Onboard Processing performance under uplink-jamming for military satellite communication systems (Uplink Jamming하에서 OBP 환경을 고려한 군 위성시스템 성능분석에 관한 연구)

  • 김인겸;신관호;안호성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6A
    • /
    • pp.864-870
    • /
    • 1999
  • A key difference between a tactical military and commercial satcom system is that the military system is expected to provide a service in the presence of ECM threats such as jamming. In this paper, we analyzed the three different type of link system applicable to the military satellite and directly compared to each system in order to find system performance according to the maximum jammer power. For the analysis, we modeled and simulated the SHF satellite system based on uplink jamming. From the results, it is found for each different type of link the maximum jammer power that can be tolerated with link operating at its suggested nominal rate. Also, we studied to the survivability level against the jamming condition through the performance comparison in shipborne and portable terminal consistent with frequency.

  • PDF

Performance Estimation of Receiving Data Parket of TT&C System on the Pass Time of LEO Satellite (저궤도 위성의 통과시간에서 관제 시스템의 수신 데이터 패킷 성능 예측)

  • 장대익;김대영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8A
    • /
    • pp.1149-1155
    • /
    • 1999
  • LEO(Low altitude Earth Orbit) Satellite systems have been utilized in the field of earth and scientific observation (cartography mission, ocean color monitoring, bioglogical coeanography, space environments observation by space physics sensor, and meteorological observation, atmospheric observation etc.), and the field of military (military communications and secret information, enemy reconnaissance etc.), and recently been developing in the field of mobile satellite commnication of GMPCS for commercial utilization. In Korea, KOMPSAT I satellite and ground system are been developing and planed to be lunched on October 1999 In this paper, the link budge of the TT&C system for LEO satellite is described and the relations between elevation angle and pass time of LEO satellite are calculated according to satellite moving. And the packet error rates of receiving data are derived three packet error rates(PER) of real-time(RT) mode, playback(PB) mode, and real-time and range tone(RT+RNG) mode are estimated according to pass time of satellite. The results of PER are the best at real-time and the worst at real-time mode and range mode at the all pass time of satellite. The average error free packet(EFP)s of real-time mode, playback mode, and real-time and range tone for the pass time of satellite are obtained as 99.999999%, 99.999912%, 99.995945% respectively. Therefore, transmission sequence of telemetry data are determined such as PER sequence according to pass time, namely, real-time, playback, and real-time and range mode.

  • PDF

COMS DATS Implementation and Test (통신해양기상위성 데이터 송수신 서브시스템의 구축 및 시험)

  • Park, Durk-Jong;Kim, Su-Jin;Ahn, Sang-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.459-470
    • /
    • 2008
  • DATS which is one of three subsystems of IDACS is responsible to receive Sensor Data, LRIT and HRIT in L-Band and transmit LRIT and HRIT in S-Band from/to COMS satellite. This paper shows detailed test procedures used to verify the performance and functionality of DATS after its implementation was completely finished. As a part of efforts to verify key DATS performance, G/T and EIRP were measured by using solar flux density as radio source. Regarding the verification of DATS functionality, RF loop-back test was conducted to validate if there is no BER degradation excepting MODEM/BB implementation loss occurred in the integrated DATS. Integrated with 13m antenna, DATS successfully restored image from received MTSAT-1R broadcasting data, LRIT and HRIT, of which frequencies are all L-Band. S-Band transmission was also verified through test antenna placed away from 13m antenna by measuring real LRIT and HRIT spectrum in S-Band. From those test results, DATS is determined to be fully ready to communicate with COMS in L-Band and S-Band.

Utilizing Software-Defined Radio, Reception Test of AIS Payload Used in a Cube-Satellite (소프트웨어 정의 라디오를 활용한 초소형위성용 선박정보수집장치의 수신시험)

  • Kim, Shin-Hyung;Lee, Chang-Hyun;Kim, Gun-Woo;Cho, Dong-Hyun
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.121-136
    • /
    • 2022
  • Automatic Identification System used in ship communication is required for marine control way, including monitoring of vessel operation in coastal and exchanging of information for safety navigation between them. But, it uses a very high frequency band of approximately 160 MHz, and at the same time, due to the curvature of Earth, there is a limit to the communication distance. Several demonstrations were made successfully over satellite, but not much work has been done yet through cube-satellite which has low-orbit at 500 km altitude. Here, we demonstrate a reception test of AIS (automatic identification system) receiver for a cube-satellites using software-defined radio (SDR). We collected AIS data from ship at port of Busan, Korea, using R8202T2 SDR and established to transmit them using Adam-Pluto and Matlab Simulink. The process of weakening the signal strength to a satellite was constructed using attenuator. Through above process, we demonstrated whether AIS data was successfully received from the AIS payload.

Modified Fold Type Helicone Reflector for Efficient Satellite TT&C Having Variable Coverage Area (가변 커버리지를 갖는 위성 관제용 접이식 헬리콘 반사체 안테나 성능 연구)

  • Lee, Sang-Min;Lee, Woo-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.9
    • /
    • pp.914-923
    • /
    • 2009
  • Helix antennas have been widely applied to satellite TT&C, data communication and GPS receiver systems onboard military, remote sensing and communication purpose satellites. The helix antennas are known to be convenient to control impedance and radiation coverage characteristics with a maximum directivity in satellite z-axis. Waveguide horn is commonly used for radar system that needs ultra-wideband pulse for exploration ground radar and electromagnetic disability measurement etc. It has high efficiency and low reflection characteristics provided by the low-profile shape and suppressed radiation distortion. In this paper, a waveguide horn structure incorporated with helix antenna design is proposed for satellite applications that require ultra-wideband pulse radar and high rate RF data communication link to ground station over wide coverage area. The main design concern is to synthesize variable beam forming pattern based on modified horn-helix combination helicone structure such that multi-mission antenna is implemented applicable for TT&C, earth observation, high data rate transmission. Waveguide horn helps to reduce the overall antenna structure size by introduction fold type reflector connected to the tapered helix antenna. The next generation KOMPSAT satellite currently under development requires high-performance precision attitude control system. We present an initial design of a hybrid hern-helix antenna structure suitable for efficient RF communication module design of multi-purpose satellite systems.

Heterogeneous Network Gateway Architecture and Simulation for Tactical MANET (전술 에드혹 환경에서 이종망 게이트웨이 구조 및 시뮬레이션 연구)

  • Roh, Bong Soo;Han, Myoung Hun;Kwon, Dae Hoon;Ham, Jae Hyun;Yun, Seon Hui;Ha, Jae Kyoung;Kim, Ki Il
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.97-105
    • /
    • 2019
  • The tactical mobile ad-hoc network(MANET) consists of distributed autonomous networks between individual ground nodes, which is effective in terms of network survivability and flexibility. However, due to constraints such as limited power, terrain, and mobility, frequent link disconnection and shadow area may occur in communication. On the other hand, the satellite network has the advantage of providing a wide-area wireless link overcoming terrain and mobility, but has limited bandwidth and high-latency characteristic. In the future battlefield, an integrated network architecture for interworking multi-layer networks through a heterogeneous network gateway (HNG) is required to overcome the limitations of the existing individual networks and increase reliability and efficiency of communication. In this paper, we propose a new HNG architecture and detailed algorithm that integrates satellite network and the tactical MANET and enables reliable data transfer based on flow characteristics of traffic. The simulations validated the proposed architecture using Riverbed Modeler, a network-level simulator.

Design and Implementation of IoT Terminal Equipment for Vessels using Thuraya Geo-stationary Orbit Satellite (Thuraya 정지궤도 위성을 이용한 선박용 IoT 단말 장치 설계 및 구현)

  • Jang, Won-Chang;Lee, Myung-Eui
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.67-72
    • /
    • 2020
  • Satellite communication is not used by many people like mobile communication, but it is a necessary technology for public service and communication services, such as providing the Internet in military, disaster, remote education and medical services, island areas, and infrastructure vulnerable areas. However, on ships and aircraft, mobile communications requiring base stations are either unavailable or restricted in their use. In this paper, we used a Raspberry Pi board as the terminal device to communicate network through satellite modem and PPP protocol, and implemented two-way data link using the text message of the modem to connect to the Thuraya geo-stationary orbit network. In addition, I/O devices were connected to the controller of the terminal equipment to design and implement an IoT device system for ships that can remotely access the system under control and control I/Os and transmit measured data through various sensors.

Adaptive Channel Attenuation Compensation Scheme for Minimum PAR in Satellite OFDMA Downlink (위성 OFDMA Downlink에서 PAR을 최소화 하기 위한 사용자 부채널 할당 및 채널 보상 기법)

  • Kim, Han-Nah;Choi, Kwon-Hue;Ahn, Do-Seob;Kang, Kun-Seok;Kim, Hee-Wook
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.1
    • /
    • pp.28-35
    • /
    • 2009
  • We investigate the adaptive channel attenuation compensation of satellite OFDMA downlink users for minimum PAR (Peak to Average power Ratio), which is one of the main challenging issues in satellite OFDMA application. First, we analyze and compare PAR performances of two main different channel attenuation compensation schemes for OFDMA, i.e., PC-OFDMA (power control OFDMA) and AMC-OFDMA (Adaptive Modulation and Coding). While AMC-OFDMA maintains the constant transmission powers through entire user data subcarriers, PC-OFDMA has non-uniform subcarrier transmission powers because subcarrier powers are separately controlled to compensate each user's sub-channel attenuation. We newly found the fact that non-uniform subcarrier power in PC-OFDMA achieves rather reduced PAR compared to AMC-OFDMA and the amount of reduction becomes larger as the power differences among subcarriers increase. Also, there is an additional PAR reduction in PC-OFDMA by optimizing subcarrier grouping scheme for user's sub-channelization.

  • PDF

Performance Evaluation of Beamforming Scheme in Millimeter Wave Wireless Communication System (밀리미터파 무선통신 시스템에서의 빔포밍 기법 성능 평가)

  • Nguyen, Thanh Ngoc;Jeon, Taehyun
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.133-137
    • /
    • 2016
  • Millimeter wave wireless communication systems, especially those targeting indoor high rate data transfer, have a strong requirement for high quality wireless link. Unfortunately, in this frequency band, the electromagnetic wave has to sustain the high propagation loss caused by the smaller wavelengths. In this scenario, beamforming technique, which enhances the link quality by focusing the radiation power on a direction, becomes one of the most important techniques in millimeter wave band wireless communication. In recent year, there been conducted many research on beamforming to improve the performance of wireless system. In this paper, we evaluate the performance of a simplified codebook-based beamforming scheme which is based on multiple-procedure and three-state beam selection. The simplified scheme significantly reduces beamforming setup time, comparing to the exhaustive searching, two-level searching adopted in IEEE 802.15.3c standard, and also conventional multi-level scheme.