• Title/Summary/Keyword: 위성기반

Search Result 2,268, Processing Time 0.031 seconds

Applications of "High Definition Digital Climate Maps" in Restructuring of Korean Agriculture (한국농업의 구조조정과 전자기후도의 역할)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The use of information on natural resources is indispensable to most agricultural activities to avoid disasters, to improve input efficiency, and to increase lam income. Most information is prepared and managed at a spatial scale called the "Hydrologic Unit" (HU), which means watershed or small river basin, because virtually every environmental problem can be handled best within a single HU. South Korea consists of 840 such watersheds and, while other watershed-specific information is routinely managed by government organizations, there are none responsible for agricultural weather and climate. A joint research team of Kyung Hee University and the Agriculture, forestry and Fisheries Information Service has begun a 4-year project funded by the Ministry of Agriculture and forestry to establish a watershed-specific agricultural weather information service based on "high definition" digital climate maps (HD-DCMs) utilizing the state of the art geospatial climatological technology. For example, a daily minimum temperature model simulating the thermodynamic nature of cold air with the aid of raster GIS and microwave temperature profiling will quantify effects of cold air drainage on local temperature. By using these techniques and 30-year (1971-2000) synoptic observations, gridded climate data including temperature, solar irradiance, and precipitation will be prepared for each watershed at a 30m spacing. Together with the climatological normals, there will be 3-hourly near-real time meterological mapping using the Korea Meteorological Administration's digital forecasting products which are prepared at a 5 km by 5 km resolution. Resulting HD-DCM database and operational technology will be transferred to local governments, and they will be responsible for routine operations and applications in their region. This paper describes the project in detail and demonstrates some of the interim results.

Red Tide Detection through Image Fusion of GOCI and Landsat OLI (GOCI와 Landsat OLI 영상 융합을 통한 적조 탐지)

  • Shin, Jisun;Kim, Keunyong;Min, Jee-Eun;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_2
    • /
    • pp.377-391
    • /
    • 2018
  • In order to efficiently monitor red tide over a wide range, the need for red tide detection using remote sensing is increasing. However, the previous studies focus on the development of red tide detection algorithm for ocean colour sensor. In this study, we propose the use of multi-sensor to improve the inaccuracy for red tide detection and remote sensing data in coastal areas with high turbidity, which are pointed out as limitations of satellite-based red tide monitoring. The study area were selected based on the red tide information provided by National Institute of Fisheries Science, and spatial fusion and spectral-based fusion were attempted using GOCI image as ocean colour sensor and Landsat OLI image as terrestrial sensor. Through spatial fusion of the two images, both the red tide of the coastal area and the outer sea areas, where the quality of Landsat OLI image was low, which were impossible to observe in GOCI images, showed improved detection results. As a result of spectral-based fusion performed by feature-level and rawdata-level, there was no significant difference in red tide distribution patterns derived from the two methods. However, in the feature-level method, the red tide area tends to overestimated as spatial resolution of the image low. As a result of pixel segmentation by linear spectral unmixing method, the difference in the red tide area was found to increase as the number of pixels with low red tide ratio increased. For rawdata-level, Gram-Schmidt sharpening method estimated a somewhat larger area than PC spectral sharpening method, but no significant difference was observed. In this study, it is shown that coastal red tide with high turbidity as well as outer sea areas can be detected through spatial fusion of ocean colour and terrestrial sensor. Also, by presenting various spectral-based fusion methods, more accurate red tide area estimation method is suggested. It is expected that this result will provide more precise detection of red tide around the Korean peninsula and accurate red tide area information needed to determine countermeasure to effectively control red tide.

Study of the ENC reduction for mobile platform (모바일 플랫폼을 위한 전자해도 소형화 연구)

  • 심우성;박재민;서상현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.181-186
    • /
    • 2003
  • The satellite navigation system is widely used for identifying a user's position regardless of weather or geographic conditions and also make effect on new technology of marine LBS(Location Based Service), which has the technology of geographic information such as the ENC. Generally, there are conceivable systems of marine LBS such as ECDIS, or ECS that use the ENC itself with powerful processor in installed type on ships bridge. Since the ENC is relatively heavy structure with dummy format for data transfer between different systems, we should reduce the ENC to small and compact size in order to use it in mobile platform. In this paper, we assumed that the mobile system like PDA, or Webpad can be used for small capability of mobile platform. However, the ENC should be updated periodically by update profile data produced by HO. If we would reduce the ENC without a consideration of update, we could not get newly updated data furthermore. As summary, we studied considerations for ENC reduction with update capability. It will make the ENC be useful in many mobile platforms for various applications.

  • PDF

Detection and Assessment of Forest Cover Change in Gangwon Province, Inter-Korean, Based on Gaussian Probability Density Function (가우시안 확률밀도 함수기반 강원도 남·북한 지역의 산림면적 변화탐지 및 평가)

  • Lee, Sujong;Park, Eunbeen;Song, Cholho;Lim, Chul-Hee;Cha, Sungeun;Lee, Sle-gee;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.649-663
    • /
    • 2019
  • The 2018 United Nations Development Programme (UNDP) report announced that deforestation in North Korea is the most extreme situation and in terms of climate change, this deforestation is a global scale issue. To respond deforestation, various study and projects are conducted based on remote sensing, but access to public data in North Korea is limited, and objectivity is difficult to be guaranteed. In this study, the forest detection based on density estimation in statistic using Landsat imagery was conducted in Gangwon province which is the only administrative district divided into South and North. The forest spatial data of South Korea was used as data for the labeling of forest and Non-forest in the Normalized Difference Vegetation Index (NDVI), and a threshold (0.6658) for forest detection was set by Gaussian Probability Density Function (PDF) estimation by category. The results show that the forest area decreased until the 2000s in both Korea, but the area increased in 2010s. It is also confirmed that the reduction of forest area on the local scale is the same as the policy direction of urbanization and industrialization at that time. The Kappa value for validation was strong agreement (0.8) and moderate agreement (0.6), respectively. The detection based on the Gaussian PDF estimation is considered a method for complementing the statistical limitations of the existing detection method using satellite imagery. This study can be used as basic data for deforestation in North Korea and Based on the detection results, it is necessary to protect and restore forest resources.

Analysis of Co-registration Performance According to Geometric Processing Level of KOMPSAT-3/3A Reference Image (KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석)

  • Yun, Yerin;Kim, Taeheon;Oh, Jaehong;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.221-232
    • /
    • 2021
  • This study analyzed co-registration results according to the geometric processing level of reference image, which are Level 1R and Level 1G provided from KOMPSAT-3 and KOMPSAT-3A images. We performed co-registration using each Level 1R and Level 1G image as a reference image, and Level 1R image as a sensed image. For constructing the experimental dataset, seven Level 1R and 1G images of KOMPSAT-3 and KOMPSAT-3A acquired from Daejeon, South Korea, were used. To coarsely align the geometric position of the two images, SURF (Speeded-Up Robust Feature) and PC (Phase Correlation) methods were combined and then repeatedly applied to the overlapping region of the images. Then, we extracted tie-points using the SURF method from coarsely aligned images and performed fine co-registration through affine transformation and piecewise Linear transformation, respectively, constructed with the tie-points. As a result of the experiment, when Level 1G image was used as a reference image, a relatively large number of tie-points were extracted than Level 1R image. Also, in the case where the reference image is Level 1G image, the root mean square error of co-registration was 5 pixels less than the case of Level 1R image on average. We have shown from the experimental results that the co-registration performance can be affected by the geometric processing level related to the initial geometric relationship between the two images. Moreover, we confirmed that the better geometric quality of the reference image achieved the more stable co-registration performance.

Sentinel-1 SAR image-based waterbody detection technique for estimating the water storage in agricultural reservoirs (농업저수지의 저수량 추정을 위한 Sentinel-1 SAR 영상 기반 수체탐지 기법)

  • Jeong, Jaehwan;Oh, Seungcheol;Lee, Seulchan;Kim, Jinyoung;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.535-544
    • /
    • 2021
  • Agricultural water occupies 48% of water demand, and management of agricultural reservoirs is essential for water resources management within agricultural basins. For more efficient use of agricultural water, monitoring the distribution of water resources in agricultural reservoirs and agricultural basins is required. Therefore, in this study, three threshold determination methods (i.e., fixed threshold, Otsu threshold, Kittler-Illingworth (KI) threshold) were compared to detect terrestrial water bodies using Sentinel-1 images for 3 years from 2018 to 2020. The purpose of this study was to evaluate methods for determining threshold values to more accurately estimate the reservoir area. In addition, by analyzing the relationship between the water surface and water storage at the Edong, Gosam, and Giheung reservoirs, water storage based on the SAR image was estimated and validated with observations. The thresholding method for detecting a waterbody was found to be the most accurate in the case of the KI threshold, and the water storage estimated by the KI threshold indicated a very high agreement (r = 0.9235, KGE' = 0.8691). Although the seasonal error characteristics were not observed, the problem of underestimation at high water levels may occur; the relationship between the water surface and the water storage could change rapidly. Therefore, it is necessary to understand the relationship between the water surface area and water storage through ground observation data for a more accurate estimation of water storage. If the use of SAR data through water resources satellites becomes possible in the future, based on the results of this study, it is judged that it will be beneficial for monitoring water storage and managing drought.

Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML (Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원)

  • Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1341-1352
    • /
    • 2023
  • The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.

Convergence of Remote Sensing and Digital Geospatial Information for Monitoring Unmeasured Reservoirs (미계측 저수지 수체 모니터링을 위한 원격탐사 및 디지털 공간정보 융합)

  • Hee-Jin Lee;Chanyang Sur;Jeongho Cho;Won-Ho Nam
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1135-1144
    • /
    • 2023
  • Many agricultural reservoirs in South Korea, constructed before 1970, have become aging facilities. The majority of small-scale reservoirs lack measurement systems to ascertain basic specifications and water levels, classifying them as unmeasured reservoirs. Furthermore, continuous sedimentation within the reservoirs and industrial development-induced water quality deterioration lead to reduced water supply capacity and changes in reservoir morphology. This study utilized Light Detection And Ranging (LiDAR) sensors, which provide elevation information and allow for the characterization of surface features, to construct high-resolution Digital Surface Model (DSM) and Digital Elevation Model (DEM) data of reservoir facilities. Additionally, bathymetric measurements based on multibeam echosounders were conducted to propose an updated approach for determining reservoir capacity. Drone-based LiDAR was employed to generate DSM and DEM data with a spatial resolution of 50 cm, enabling the display of elevations of hydraulic structures, such as embankments, spillways, and intake channels. Furthermore, using drone-based hyperspectral imagery, Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) were calculated to detect water bodies and verify differences from existing reservoir boundaries. The constructed high-resolution DEM data were integrated with bathymetric measurements to create underwater contour maps, which were used to generate a Triangulated Irregular Network (TIN). The TIN was utilized to calculate the inundation area and volume of the reservoir, yielding results highly consistent with basic specifications. Considering areas that were not surveyed due to underwater vegetation, it is anticipated that this data will be valuable for future updates of reservoir capacity information.

Analysis of the Changesin PM2.5 Concentrations using WRF-CMAQ Modeling System: Focusing on the Fall in 2016 and 2017 (WRF-CMAQ 모델링 시스템을 활용한 PM2.5 농도변동 원인 분석: 2016년과 2017년의 가을철을 중심으로)

  • Nam, Ki-Pyo;Lim, Yong-Jae;Park, Ji-Hoon;Kim, Deok-Rae;Lee, Jae-Bum;Kim, Sang-Min;Jung, Dong-Hee;Choi, Ki-Chul;Park, Hyun-Ju;Lee, Han-Sol;Jang, Lim-Seok;Kim, Jeong-Soo
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.2
    • /
    • pp.215-231
    • /
    • 2018
  • It was analyzed to identify the cause of $PM_{2.5}$ concentration changes for the fall in 2016 and 2017 in South Korea using ground measurement data such as meterological variables and $PM_{2.5}$, AOD from GOCI satellite, and WRF-CMAQ modeling system. The result of ground measurement data showed that the $PM_{2.5}$ concentrations for the fall in 2017 decreased by 12.3% ($3.0{\mu}g/m^3$) compared to that of 2016. The difference of $PM_{2.5}$ concentrations between 2016 and 2017 mainly occurred for 11 Oct. - 20 Oct. (CASE1) and 15 Nov. - 19 Nov. (CASE2) when weather conditions were difficult to long-range transport from foreign regions and favored atmospheric ventilation in 2017 compared to 2016. Simulated $PM_{2.5}$ concentrations in 2017 decreased by 64.0% ($23.1{\mu}g/m^3$) and 35.7% ($12.2{\mu}g/m^3$) during CASE1 and CASE2, respectively. These results corresponded to the changes in observed $PM_{2.5}$ concentrations such as 53.6% for CASE1 and 47.8% for CASE2. It is implied that the changes in weather conditions affected significantly the $PM_{2.5}$ concentrations for the fall between 2016 and 2017. The contributions to decreases in $PM_{2.5}$ concentrations was assessed as 52.8% by long-range transport from foreign regions and 47.2% by atmospheric ventilation effects in domestic regions during CASE1, whereas their decreases during CASE2 were affected by 66.4% from foreign regions and 33.6% in domestic regions.

Improvement of infrared channel emissivity data in COMS observation area from recent MODIS data(2009-2012) (최근 MODIS 자료(2009-2012)를 이용한 천리안 관측 지역의 적외채널 방출률 자료 개선)

  • Park, Ki-Hong;Suh, Myoung-Seok
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.109-126
    • /
    • 2014
  • We improved the Land Surface Emissivity (LSE) data (Kongju National University LSE v.2: KNULSE_v2) over the Communication, Ocean and Meteorological Satellite (COMS) observation region using recent(2009-2012) Moderate Resolution Imaging Spectroradiometer (MODIS) data. The surface emissivity was derived using the Vegetation Cover Method (VCM) based on the assumption that the pixel is only composed of ground and vegetation. The main issues addressed in this study are as follows: 1) the impacts of snow cover are included using Normalized Difference Snow Index (NDSI) data, 2) the number of channels is extended from two (11, 12 ${\mu}m$) to four channels (3.7, 8.7, 11, 12 ${\mu}m$), 3) the land cover map data is also updated using the optimized remapping of the five state-of-the-art land cover maps, and 4) the latest look-up table for the emissivity of land surface according to the land cover is used. The updated emissivity data showed a strong seasonal variation with high and low values for the summer and winter, respectively. However, the surface emissivity over the desert or evergreen tree areas showed a relatively weak seasonal variation irrespective of the channels. The snow cover generally increases the emissivity of 3.7, 8.7, and 11 ${\mu}m$ but decreases that of 12 ${\mu}m$. As the results show, the pattern correlation between the updated emissivity data and the MODIS LSE data is clearly increased for the winter season, in particular, the 11 ${\mu}m$. However, the differences between the two emissivity data are slightly increased with a maximum increase in the 3.7 ${\mu}m$. The emissivity data updated in this study can be used for the improvement of accuracy of land surface temperature derived from the infrared channel data of COMS.