• Title/Summary/Keyword: 위너과정

Search Result 22, Processing Time 0.019 seconds

Noise Statistics Estimation Using Target-to-Noise Contribution Ratio for Parameterized Multichannel Wiener Filter (변수내장형 다채널 위너필터를 위한 목적신호대잡음 기여비를 이용한 잡음추정기법)

  • Hong, Jungpyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1926-1933
    • /
    • 2022
  • Parameterized multichannel Wiener filter (PMWF) is a linear filter that can control the trade-off between residual noise and signal distortion using the embedded parameter. To apply the PMWF to noisy inputs, accurate noise estimation is important and multichannel minima-controlled recursive averaging (MMCRA) is widely used. However, in the case of the MMCRA, the accuracy of noise estimation decreases when a directional interference is involved into the array inputs. Consequently, the performance of the PMWF is degraded. Therefore, we propose a noise power spectral density (PSD) estimation method for the PMWF in this paper. The proposed method is based on a consecutive process of eigenvalue decomposition on noisy input PSD, estimation of the target component contribution using directional information, and exponential weighting for improved estimation of the target contribution. For evaluation, four objective measures were compared with the MMCRA and we verify that the PMWF with the proposed noise estimation method can improve performance in environments where directional interfereces exist.

Application of Wiener filter to Chest CR images (흉부 CR영상에 대한 위너필터의 적용)

  • Choi, Seokyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.4
    • /
    • pp.519-524
    • /
    • 2018
  • Chest examinations and mass chest examinations using the CR(computed radiography) System are frequently used clinically. a factor that degrades image quality in the acquisition process is the use of unused IPs long times. this paper addresses the estimation of winer filter and improved wiener filter to restoration of Chest CR images Experimental results show that the proposed method can reduce noise. in low noise variation image wiener method was excellent than improved method and the result was the opposite at high noise varience. the application of algorithms to chest CR images effectively eliminates noise. the classic Wiener filter was better than the improved method. Multiple patients examined during the process without any erase IP(image plate) process, The proposed algorithm determines that the images can be restored to a good quality and will help to read the images.

Robust Multi-channel Wiener Filter for Suppressing Noise in Microphone Array Signal (마이크로폰 어레이 신호의 잡음 제거를 위한 강인한 다채널 위너 필터)

  • Jung, Junyoung;Kim, Gibak
    • Journal of Broadcast Engineering
    • /
    • v.23 no.4
    • /
    • pp.519-525
    • /
    • 2018
  • This paper deals with noise suppression of multi-channel data captured by microphone array using multi-channel Wiener filter. Multi-channel Wiener filter does not rely on information about the direction of the target speech and can be partitioned into an MVDR (Minimum Variance Distortionless Response) spatial filter and a single channel spectral filter. The acoustic transfer function between the single speech source and microphones can be estimated by subspace decomposition of multi-channel Wiener filter. The errors are incurred in the estimation of the acoustic transfer function due to the errors in the estimation of correlation matrices, which in turn results in speech distortion in the MVDR filter. To alleviate the speech distortion in the MVDR filter, diagonal loading is applied. In the experiments, database with seven microphones was used and MFCC distance was measured to demonstrate the effectiveness of the diagonal loading.

A Study on Image Restoration using Mean and Wiener Filter (평균 및 위너 필터를 사용한 영상 복원에 관한 연구)

  • Moon Hong-Deuk;Kang Kyeong-Deog;Bae Sang-Bum;Kim Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1393-1398
    • /
    • 2004
  • Image is degraded by several causes such as the process of acquisition, storage and transmission. To restore those images, many researches have been continued. Centrally methods to restore degraded image by AWGN(additive white gaussian noise) a.e mean filter and wiener filter. Especially, mean filter is superior in noise reduction of area that is a small change of luminosity. But mean filter brings about the effect smoothing edge components of the image, because it does'nt consider characteristics of the image. So in this paper we propose an image restoration method compounding respective images adding established weights, after filtering with mean filter and powerful wiener filter in both improvement of contrast and preservation of edge components.

Enhancement of Evoked Potential Waveform using Delay-compensated Wiener Filtering (지연보상 위너 필터링에 의한 유발전위 파형개선)

  • Lee, JeeEun;Yoo, Sun K.
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.261-269
    • /
    • 2013
  • In this paper, the evoked potential(EP) was represented by additive delay model to comply with the variational noisy response of stimulus-event synchronization. The hybrid method of delay compensated-Wiener filtered-ensemble averaging(DWEA) was proposed to enhance the EP signal distortion occurred during averaging procedure due to synchronization timing mismatch. The performance of DWEA has been tested by surrogated simulation, which is composed of synthesized arbitrary delay and arbitrary level of added noise. The performance of DWEA is better than those of Wiener filtered-ensemble averaging and of conventional ensemble averaging. DWEA is endurable up to added noise gain of 7 for 10 % mean square error limit. Throughout the experimentation observation, it has been demonstrated that DWEA can be applied to enhance the evoked potential having the synchronization mismatch with added noise.

A simple Demonstration of the Wiener-Khinchin Theorem using a Digital Oscilloscope and Personal Computer (디지털 오실로스코프에 의한 Wiener-Khinchin 정리의 시현)

  • Jung, Se-Min
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.245-250
    • /
    • 2013
  • The Wiener-Khinchin theorem, which means that the autocorrelation function of a signal corresponds to the power spectrum of the signal, is very important in signal processing, spectroscopy and telecommunications engineering. However, because of needs for some relatively expensive equipments such as a correlator and the signal processing system, its demonstration in most undergraduate class is not easy so far. Recently, digital oscilloscopes whose functions can be replaced foresaid equipments are marketed with development of digital engineering. In this paper, a simple demonstration of the theorem is given by a digital storage oscilloscope and a personal computer with its theoretical background. The reason that deals again with this theorem which has been introduced in 1930 is that it has been not well informed yet to us and theoretical background of the demonstration is directly introduced from its driving process. Through deriving process of the theorem, some extended physical meanings of the impedance, power, power factor, Wiener spectrum, linear system response and, furthermore, basic idea of the Planck's quantization in the black body theory reveal themselves naturally. Hence it can be referred to lectures in general physics, modern physics, spectroscopy and material characterization experiment.

A Performance Improvement of Resource Prediction Method Based on Wiener Model in Wireless Cellular Networks (무선 셀룰러 망에서 위너모델에 기초한 자원예측 방법의 성능개선)

  • Lee Jin-Yi
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.69-76
    • /
    • 2005
  • To effectively use limited resources in wireless cellular networks it is necessary to predict exactly the amount of resources required by handoff calls at a future time. In this paper we propose a method which predicts the amount of resources needed by handoff calls more accurately than the existing method based on Wiener processes. The existing method uses the current demands to predict future demands. Although this method is much simpler than using traffic information from neighbor cells, its prediction error increases as time elapses, leading to waste of wireless resources. By using an exponential parameter to decrease the magnitude of error over time, we show in simulation how to outperform the existing method in resource utilization as well as in prediction of resource demands.

LMS-Wiener Model for Resources Prediction of Handoff Calls in Multimedia Wireless IP Networks (멀티미디어 무선 IP 망에서 핸드오프 호의 자원예측을 위한 LMS-위너 모델)

  • Lee, Jin-Yi;Lee, Kwang-Hyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.2A
    • /
    • pp.26-33
    • /
    • 2005
  • Exact prediction of resource demands for future calls enhances the efficiency of the limited resource utilization in resource reservation methods for potential calls in wireless IP networks. In this paper, we propose a LMS-Wiener resource(bandwidth) prediction for future handoff calls, and then an the proposed method is compared with an existing Wiener-based method in terms of prediction error through our simulations. In our simulations, we assume that handoff call arrivals follow a non-Poisson process and each handoff call has an non-exponentially distributed channel holdingtime in the cell, considering that handoff call arrival pattern is not Poisson distribution but non-Poisson for long periods of time in wireless picocellular IP networks. Simulation results show that the prediction error in the proposed method converges to the lower value while in an existing method increase as time is passed. Therefore we may conclude that the proposed method improves the efficiency of resource utilization by more exactly predicting resource demands for future handoff calls than an existing method.

Reference Channel Input-Based Speech Enhancement for Noise-Robust Recognition in Intelligent TV Applications (지능형 TV의 음성인식을 위한 참조 잡음 기반 음성개선)

  • Jeong, Sangbae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.280-286
    • /
    • 2013
  • In this paper, a noise reduction system is proposed for the speech interface in intelligent TV applications. To reduce TV speaker sound which are very serious noises degrading recognition performance, a noise reduction algorithm utilizing the direct TV sound as the reference noise input is implemented. In the proposed algorithm, transfer functions are estimated to compensate for the difference between the direct TV sound and that recorded with the microphone installed on the TV frame. Then, the noise power spectrum in the received signal is calculated to perform Wiener filter-based noise cancellation. Additionally, a postprocessing step is applied to reduce remaining noises. Experimental results show that the proposed algorithm shows 88% recognition rate for isolated Korean words at 5 dB input SNR.

Efficient Bayesian Inference on Asymmetric Jump-Diffusion Models (비대칭적 점프확산 모형의 효율적인 베이지안 추론)

  • Park, Taeyoung;Lee, Youngeun
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.959-973
    • /
    • 2014
  • Asset pricing models that account for asymmetric volatility in asset prices have been recently proposed. This article presents an efficient Bayesian method to analyze asset-pricing models. The method is developed by devising a partially collapsed Gibbs sampler that capitalizes on the functional incompatibility of conditional distributions without complicating the updates of model components. The proposed method is illustrated using simulated data and applied to daily S&P 500 data observed from September 1980 to August 2014.