• Title/Summary/Keyword: 웰즈터빈

Search Result 13, Processing Time 0.018 seconds

The Experimental Study for the Stall prevention of Wells Turbine (웰즈터빈의 실속방지에 대한 실험적 연구)

  • Kim, Tai-Whan;Park, Sung-Soo;Setoguchi, T.
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.61-67
    • /
    • 2005
  • In order to improve the stall characteristics of the Wells turbine blade, experimental investigations have been made in the performance of the Wells turbine with 1), 2) grooved blade surface to reduce fraction drag against the steady and the sinusoidal flow condition. As the conclusion, the two methods are valid to improve the stall characteristics of the Wells turbine.

A Study on the Design of Wells Turbine for Wave Power Conversion by Various Flap Shape (1) (플랩현상 변화에 따른 파력발전용 웰즈터빈의 형상설계에 관한 연구(1))

  • Kim D.K.;Kim J.H.;Choi Y,H.;Bae S.T.;Lee Y.W.;Lee Y.H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.3
    • /
    • pp.253-259
    • /
    • 2004
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA0015 Wells turbine. The five double flaps which have 0.5% difference were selected. A Navier-Stokes code, CFX-TASCflow, was used to calculate the flow field of the Wells turbine. The basic feature of the Wells turbine is that even though the cyclic airflow produces oscillating axial forces on the airfoil blades, the tangential force on the rotor is always in the same direction. Geometry used to define the three dimension numerical grid is based upon that of an experimental test rig. This paper tries In optimized disign the double flap of Wells turbine with the numerical analysis.