• Title/Summary/Keyword: 웨어러블 시스템

Search Result 281, Processing Time 0.024 seconds

Psychometric Analysis for Designing Elderly Customized Walking Assist Device (고령자 맞춤형 보행보조서비스 설계를 위한 심리측정 분석)

  • Kim, Junghwa;Jang, Jeong-ah;Choi, Keechoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.39-51
    • /
    • 2016
  • In accordance to rapid aging of population, the accidents of elderly pedestrian and pedestrian safety are becoming very important issues. In terms of smartphone technologies, older people are increasingly looking for useful and friendly ICT services that which can add a value on their silver life. This paper introduced a new IT-based service for elderly walking assist using a smart-phone accompanied by a wearable watch. We describe the functional requirements and a systems architecture model with an interface between a smart-phone and wearable watch. Moreover, this study attempted to verify what services are needed and to estimate elderly pedestrians' WTP (willingness to pay) for IT-based walking assistance device. A total of 189 elderly pedestrians were randomly surveyed through face-to-face interviews. The questionnaire consisted of 3 categories: (1) questions pertaining to socio-economic status, (2) 12 questions regarding walking attitudes, and (3) a question to measure WTP. With this gathered data, factor analysis and path model estimating were conducted. The results identified the elderly user requirements and the use-value of new innovative products for IT-based walking assistance services by two groups(latent elderly and elderly). The modeling result shows that elderly's service preference would increase the possibilities for the commercialization of IT-based walking device with improving their walking safety.

A Study on Apparatus of Smart Wearable for Mine Detection (스마트 웨어러블 지뢰탐지 장치 연구)

  • Kim, Chi-Wook;Koo, Kyong-Wan;Cha, Jae-Sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.263-267
    • /
    • 2015
  • current mine detector can't division the section if it is conducted and it needs too much labor force and time. in addition to, if the user don't move the head of sensor in regular speed or move it too fast, it is hard to detect a mine exactly. according to this, to improve the problem using one direction ultrasonic wave sensing signal, that is made up of human body antenna part, main micro processor unit part, smart glasses part, body equipped LCD monitor part, wireless data transmit part, belt type power supply part, black box type camera, Security Communication headset. the user can equip this at head, body, arm, waist and leg in removable type. so it is able to detect the powder in a 360-degree on(under) the ground whether it is metal or nonmetal and it can express the 2D or 3D film about distance, form and material of the mine. so the battle combats can avoid the mine and move fast. also, through the portable battery and twin self power supply system of the power supply part, combat troops can fight without extra recharge and we can monitoring the battle situation of distant place at the command center server on real-time. and then, it makes able to sharing the information of battle among battle combats one on one. as a result, the purpose of this study is researching a smart wearable mine detector which can establish a smart battle system as if the commander is in the site of the battle.

Design and Implementation of a Cardiac Arrest Supporting System Using Wearable Device (웨어러블 기기를 사용한 심정지 환자 지원 시스템의 설계 및 구현)

  • Jang, Jin-Soo;Lee, Seo-Joon;Lee, Kwang-In;Lee, Tae-Ro
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.227-238
    • /
    • 2017
  • Cardiac arrest is a serious intensive emergency disease that causes death within less than several minutes by depriving the body and brain of blood supply. Survival rate of cardiac arrest patients outside of hospitals is especially low. This is because pedestrians usually do not perceive the patient as a sick person, also, even if they do so, they have no medical knowledge to properly react to such emergency. The purpose of this study is to propose a solution that uses widely spread smart phones to alert pedestrians of the cardiac arrest patient, prevents cardiac arrest, and provides first-aid measures. By applying the proposed solution, cardiac arrest can be prevented in advance, pedestrians can be alerted to keep the golden time(4 minutes), and first witness can quickly proceed with CPR, ultimately enhancing the survival rate of the cardiac arrest patient.

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • v.21 no.4
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.

Health Risk Management using Feature Extraction and Cluster Analysis considering Time Flow (시간흐름을 고려한 특징 추출과 군집 분석을 이용한 헬스 리스크 관리)

  • Kang, Ji-Soo;Chung, Kyungyong;Jung, Hoill
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.99-104
    • /
    • 2021
  • In this paper, we propose health risk management using feature extraction and cluster analysis considering time flow. The proposed method proceeds in three steps. The first is the pre-processing and feature extraction step. It collects user's lifelog using a wearable device, removes incomplete data, errors, noise, and contradictory data, and processes missing values. Then, for feature extraction, important variables are selected through principal component analysis, and data similar to the relationship between the data are classified through correlation coefficient and covariance. In order to analyze the features extracted from the lifelog, dynamic clustering is performed through the K-means algorithm in consideration of the passage of time. The new data is clustered through the similarity distance measurement method based on the increment of the sum of squared errors. Next is to extract information about the cluster by considering the passage of time. Therefore, using the health decision-making system through feature clusters, risks able to managed through factors such as physical characteristics, lifestyle habits, disease status, health care event occurrence risk, and predictability. The performance evaluation compares the proposed method using Precision, Recall, and F-measure with the fuzzy and kernel-based clustering. As a result of the evaluation, the proposed method is excellently evaluated. Therefore, through the proposed method, it is possible to accurately predict and appropriately manage the user's potential health risk by using the similarity with the patient.

Detection of Zebra-crossing Areas Based on Deep Learning with Combination of SegNet and ResNet (SegNet과 ResNet을 조합한 딥러닝에 기반한 횡단보도 영역 검출)

  • Liang, Han;Seo, Suyoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • This paper presents a method to detect zebra-crossing using deep learning which combines SegNet and ResNet. For the blind, a safe crossing system is important to know exactly where the zebra-crossings are. Zebra-crossing detection by deep learning can be a good solution to this problem and robotic vision-based assistive technologies sprung up over the past few years, which focused on specific scene objects using monocular detectors. These traditional methods have achieved significant results with relatively long processing times, and enhanced the zebra-crossing perception to a large extent. However, running all detectors jointly incurs a long latency and becomes computationally prohibitive on wearable embedded systems. In this paper, we propose a model for fast and stable segmentation of zebra-crossing from captured images. The model is improved based on a combination of SegNet and ResNet and consists of three steps. First, the input image is subsampled to extract image features and the convolutional neural network of ResNet is modified to make it the new encoder. Second, through the SegNet original up-sampling network, the abstract features are restored to the original image size. Finally, the method classifies all pixels and calculates the accuracy of each pixel. The experimental results prove the efficiency of the modified semantic segmentation algorithm with a relatively high computing speed.

Laser Transmission Welding of Flexible Substrates and Evaluation of the Mechanical Properties (플렉서블 기판의 레이저 투과 용접 및 기계적 특성 평가)

  • Ko, Myeong-Jun;Sohn, Minjeong;Kim, Min-Su;Na, Jeehoo;Ju, Byeong-Kwon;Park, Young-Bae;Lee, Tae-Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.113-119
    • /
    • 2022
  • In order to improve the mechanical reliability of next-generation electronic devices including flexible, wearable devices, a high level of mechanical reliability is required at various flexible joints. Organic adhesive materials such as epoxy for bonding existing polymer substrates inevitably have an increase in the thickness of the joint and involve problems of thermodynamic damage due to repeated deformation and high temperature hardening. Therefore, it is required to develop a low-temperature bonding process to minimize the thickness of the joint and prevent thermal damage for flexible bonding. This study developed flexible laser transmission welding (f-LTW) that allows bonding of flexible substrates with flexibility, robustness, and low thermal damage. Carbon nanotube (CNT) is thin-film coated on a flexible substrate to reduce the thickness of the joint, and a local melt bonding process on the surface of a polymer substrate by heating a CNT dispersion beam laser has been developed. The laser process conditions were constructed to minimize the thermal damage of the substrate and the mechanism of forming a CNT junction with the polymer substrate. In addition, lap shear adhesion test, peel test, and repeated bending experiment were conducted to evaluate the strength and flexibility of the flexible bonding joint.

Study on Structural Changes and Electromagnetic Interference Shielding Properties of Ti-based MXene Materials by Heat Treatment (열처리에 의한 Ti 기반 MXene 소재의 구조 변화와 전자파 간섭 차폐 특성에 관한 연구)

  • Han Xue;Ji Soo Kyoung;Yun Sung Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.111-118
    • /
    • 2023
  • MXene, a two-dimensional transition metal carbide or nitride, has recently attracted much attention as a lightweight and flexible electromagnetic shielding material due to its high electrical conductivity, good mechanical strength and thermal stability. In particular, the Ti-based MXene, Ti3C2Tx and Ti2CTx are reported to have the best electrical conductivity and electromagnetic shielding properties in the vast MXene family. Therefore, in this study, Ti3C2Tx and Ti2CTx films were prepared by vacuum filtration using Ti3C2Tx and Ti2CTx dispersions synthesized by interlayer metal etching and centrifugation of Ti3AlC2 and Ti2AlC. The electrical conductivity and electromagnetic shielding efficiency of the films were measured after heat treatment at high temperature. Then, X-ray diffraction and photoelectron spectroscopy were performed to analyze the structural changes of Ti3C2Tx and Ti2CTx films after heat treatment and their effects on electromagnetic shielding. Based on the results of this study, we propose an optimal structure for an ultra-thin, lightweight, and high performance MXene-based electromagnetic shielding film for future applications in small and wearable electronics.

Attitude Confidence and User Resistance for Purchasing Wearable Devices on Virtual Reality: Based on Virtual Reality Headgears (가상현실 웨어러블 기기의 구매 촉진을 위한 태도 자신감과 사용자 저항 태도: 가상현실 헤드기어를 중심으로)

  • Sohn, Bong-Jin;Park, Da-Sul;Choi, Jaewon
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.165-183
    • /
    • 2016
  • Over the past decade, there has been a rapid diffusion of technological devices and a rising number of various devices, resulting in an escalation of virtual reality technology. Technological market has rapidly been changed from smartphone to wearable devices based on virtual reality. Virtual reality can make users feel real situation through sensing interaction, voice, motion capture and so on. Facebook.com, Google, Samsung, LG, Sony and so on have investigated developing platform of virtual reality. the pricing of virtual reality devices also had decreased into 30% from their launched period. Thus market infrastructure in virtual reality have rapidly been developed to crease marketplace. However, most consumers recognize that virtual reality is not ease to purchase or use. That could not lead consumers to positive attitude for devices and purchase the related devices in the early market. Through previous studies related to virtual reality, there are few studies focusing on why the devices for virtual reality stayed in early stage in adoption & diffusion context in the market. Almost previous studies considered the reasons of hard adoption for innovative products in the viewpoints of Typology of Innovation Resistance, MIR(Management of Innovation Resistant), UTAUT & UTAUT2. However, product-based antecedents also important to increase user intention to purchase and use products in the technological market. In this study, we focus on user acceptance and resistance for increasing purchase and usage promotions of wearable devices related to virtual reality based on headgear products like Galaxy Gear. Especially, we added a variables like attitude confidence as a dimension for user resistance. The research questions of this study are follows. First, how attitude confidence and innovativeness resistance affect user intention to use? Second, What factors related to content and brand contexts can affect user intention to use? This research collected data from the participants who have experiences using virtual rality headgears aged between 20s to 50s located in South Korea. In order to collect data, this study used a pilot test and through making face-to-face interviews on three specialists, face validity and content validity were evaluated for the questionnaire validity. Cleansing the data, we dropped some outliers and data of irrelevant papers. Totally, 156 responses were used for testing the suggested hypotheses. Through collecting data, demographics and the relationships among variables were analyzed through conducting structural equation modeling by PLS. The data showed that the sex of respondents who have experience using social commerce sites (male=86(55.1%), female=70(44.9%). The ages of respondents are mostly from 20s (74.4%) to 30s (16.7%). 126 respondents (80.8%) have used virtual reality devices. The results of our model estimation are as follows. With the exception of Hypothesis 1 and 7, which deals with the two relationships between brand awareness to attitude confidence, and quality of content to perceived enjoyment, all of our hypotheses were supported. In compliance with our hypotheses, perceived ease of use (H2) and use innovativeness (H3) were supported with its positively influence for the attitude confidence. This finding indicates that the more ease of use and innovativeness for devices increased, the more users' attitude confidence increased. Perceived price (H4), enjoyment (H5), Quantity of contents (H6) significantly increase user resistance. However, perceived price positively affect user innovativeness resistance meanwhile perceived enjoyment and quantity of contents negatively affect user innovativeness resistance. In addition, aesthetic exterior (H6) was also positively associated with perceived price (p<0.01). Also projection quality (H8) can increase perceived enjoyment (p<0.05). Finally, attitude confidence (H10) increased user intention to use virtual reality devices. however user resistance (H11) negatively affect user intention to use virtual reality devices. The findings of this study show that attitude confidence and user innovativeness resistance differently influence customer intention for using virtual reality devices. There are two distinct characteristic of attitude confidence: perceived ease of use and user innovativeness. This study identified the antecedents of different roles of perceived price (aesthetic exterior) and perceived enjoyment (quality of contents & projection quality). The findings indicated that brand awareness and quality of contents for virtual reality is not formed within virtual reality market yet. Therefore, firms should developed brand awareness for their product in the virtual market to increase market share.

Effect of the Configuration of Contact Type Textile Electrode on the Performance of Heart Activity Signal Acquisition for Smart Healthcare (스마트 헬스케어를 위한 심장활동 신호 검출용 접촉식 직물전극의 구조가 센싱 성능에 미치는 영향)

  • Cho, Hyun-Seung;Koo, Hye-Ran;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Jeong-Hwan;Kwak, Hwy-Kuen;Ko, Yun-Su;Oh, Yun-Jung;Park, Su-Youn;Kim, Sin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.63-76
    • /
    • 2018
  • The purpose of this study was to investigate the effect of contact type textile electrode structure on heart activity signal acquisition for smart healthcare. In this study, we devised six contact type textile electrodes whose electrode size and configuration were manipulated for measuring heart activity signals using computerized embroidery. We detected heart activity signals using a modified lead II and by attaching each textile electrode to the chest band in four healthy male subjects in a standing static posture. We measured the signals four times repeatedly for all types of electrodes. The heart activity signals were sampled at 1 kHz using a BIOPAC ECG100, and the detected original signals were filtered through a band-pass filter. To compare the performance of heart activity signal acquisition among the different structures of the textile electrodes, we conducted a qualitative analysis using signal waveform and size as parameters. In addition, we performed a quantitative analysis by calculating signal power ratio (SPR) of the heart activity signals obtained through each electrode. We analyzed differences in the performance of heart activity signal acquisition of the six electrodes by performing difference and post-hoc tests using nonparametric statistic methods on the calculated SPR. The results showed a significant difference both in terms of qualitative and quantitative aspects of heart activity signals among the tested contact type textile electrodes. Regarding the configurations of the contact type textile electrodes, the three-dimensionally inflated electrode (3DIE) was found to obtain better quality signals than the flat electrode. However, regarding the electrode size, no significant difference was found in performance of heart signal acquisition for the three electrode sizes. These results suggest that the configuration method (flat/3DIE), which is one of the two requirements of a contact type textile electrode structure for heart activity signal acquisition, has a critical effect on the performance of heart activity signal acquisition for wearable healthcare. Based on the results of this study, we plan to develop a smart clothing technology that can monitor high-quality heart activity without time and space constraints by implementing a clothing platform integrated with the textile electrode and developing a performance improvement plan.