• Title/Summary/Keyword: 월파량 저감계수

Search Result 3, Processing Time 0.02 seconds

Wave Overtopping Reduction Coefficient of Vertical Wall for Obliquely Incident Waves (경사입사파에 대한 직립구조물에서의 월파량 저감계수)

  • Kim, Young-Taek;Lee, Jong-In;Cho, Yong-Sik;Ha, Tae-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.149-155
    • /
    • 2010
  • The existing formula for estimating the wave overtopping are mainly about the perpendicularly incident wave to the structure and wave overtopping formula for the obliquely incident wave are rare. Moreover, these formula present only the overtopping reduction factor(${\gamma}_{\beta}$) with respect to the incident wave angle rather than the spatial distribution of overtopping along the structures because the length of model is relatively too short for the wave to propagate along the structure. In this study, the wave overtopping reduction factor considering the spatial variation of wave overtopping along the vertical wall is investigated using the hydraulic model tests and the results are compared with the those of EurOtop(2007). The wave overtopping reduction factor is modified for ${\beta}$ > $45^{\circ}$ condition.

Spatial Distribution of Wave Overtopping along Vertical Structure due to Obliquely Incident Waves (경사입사파에 의한 직립구조물에서 월파의 공간적 분포)

  • Kim, Young-Taek;Lee, Jong-In;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.414-421
    • /
    • 2011
  • In determination of the crest height of a vertical structure against attacking of obliquely incident waves, most of existing studies have suggested to use the overtopping reduction factor due to incident angles. However, they have not considered the amplification of wave heights and the spatial distribution of wave overtopping. In this study, a spatial distribution of overtopping due to the amplification of wave heights along a vertical structure is investigated experimentally. It is recommended that the crest height can be determined by the same manner as that for normally incident waves up to 3 significant wave lengths from the one end of the structure. However, the rest part of the structure can be done by employing the overtopping reduction factor with considering the amplification of wave heights and the spatial distribution of wave overtopping.

Hydraulic Experiments on Reflection Coefficients for Perforated Wall Caisson with Rock Fill (유수실을 사석으로 채운 유공 케이슨에 대한 반사계수 실험)

  • Kim, Young-Taek;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.403-408
    • /
    • 2019
  • In general, the caisson having the perforated wall is used to for the purpose of reducing the wave reflection and wave overtopping. In this study, the hydraulic characteristics (reflection coefficient) of the perforated wall caisson chamber filled with aggregates (rocks) were investigated with hydraulic model tests. When the perforated wall chambers were filled with aggregates, the reflection coefficients would increase. However, it was confirmed that the rock filling method into the perforated wall chamber could secure the stability of the structures and satisfy the hydraulic characteristics at a certain level.