• 제목/요약/키워드: 원 탐지

Search Result 738, Processing Time 0.028 seconds

Modified Electrical Resistivity Survey for Leakage Detection of a Waterside Concrete Barrage (콘크리트 수변구조물의 누수 탐지를 위한 변형된 전기비저항 탐사 연구)

  • Lee, Bomi;Oh, Seokhoon;Im, Eunsang
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.115-124
    • /
    • 2015
  • A modified electrical resistivity survey has been suggested and applied to a leakage detection problem of concrete barrage. We suggest the modified electrical resistivity methods using electrodes floating on the water and apply line current sources instead of conventional point current sources in order to facilitate simple analysis. In addition, the study introduced the following three variations of modified electrode array: Direct potential array, Parallel potential array and Cross potential array. These arrays were tested and investigated through numerical experiment, physical model experiment and geophysical field exploration in order to verify their applicability to the water leakage detection of a concrete barrage. When water leakage occurred, all kind of array operations demonstrated distinct changes of aspects of potential difference in graphs obtained by not only the numerical and physical model experiments but also geophysical field exploration. Therefore, this modified electrode arrays of electrical resistivity survey, which has been adapted to the concrete barrage, has been found to be a useful method to detect water leakage.

Analysis of Atmospheric Conditions Using Long-Range Surveillance Radar (장거리 탐지 레이다를 이용한 대기상태 분석)

  • Kang, Maneg Chang;Kwon, Sewoong;Lee, Jong-hyun;Lee, Kiwon;Sun, Woong;Byun, Gangil;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.2
    • /
    • pp.120-128
    • /
    • 2017
  • The refraction phenomenon of radio waves should be considered to improve the detection accuracy of target altitudes for long-range surveillance radars, however, it is difficult to estimate accurate refractivity of atmosphere for every location. In this paper, we propose the atmosphere evaluation metric(AEM) to estimate atmospheric conditions at target locations using target altitudes obtained from primary surveillance radar(PSR) and secondary surveillance radar(SSR). To verify the suitability of the proposed metric, we observed atmospheric conditions and calculated estimation errors of target altitudes using measured data.

Real-time Moving Object Detection Based on RPCA via GD for FMCW Radar

  • Nguyen, Huy Toan;Yu, Gwang Hyun;Na, Seung You;Kim, Jin Young;Seo, Kyung Sik
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.6
    • /
    • pp.103-114
    • /
    • 2019
  • Moving-target detection using frequency-modulated continuous-wave (FMCW) radar systems has recently attracted attention. Detection tasks are more challenging with noise resulting from signals reflected from strong static objects or small moving objects(clutter) within radar range. Robust Principal Component Analysis (RPCA) approach for FMCW radar to detect moving objects in noisy environments is employed in this paper. In detail, compensation and calibration are first applied to raw input signals. Then, RPCA via Gradient Descents (RPCA-GD) is adopted to model the low-rank noisy background. A novel update algorithm for RPCA is proposed to reduce the computation cost. Finally, moving-targets are localized using an Automatic Multiscale-based Peak Detection (AMPD) method. All processing steps are based on a sliding window approach. The proposed scheme shows impressive results in both processing time and accuracy in comparison to other RPCA-based approaches on various experimental scenarios.

Worker Collision Safety Management System using Object Detection (객체 탐지를 활용한 근로자 충돌 안전관리 시스템)

  • Lee, Taejun;Kim, Seongjae;Hwang, Chul-Hyun;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1259-1265
    • /
    • 2022
  • Recently, AI, big data, and IoT technologies are being used in various solutions such as fire detection and gas or dangerous substance detection for safety accident prevention. According to the status of occupational accidents published by the Ministry of Employment and Labor in 2021, the accident rate, the number of injured, and the number of deaths have increased compared to 2020. In this paper, referring to the dataset construction guidelines provided by the National Intelligence Service Agency(NIA), the dataset is directly collected from the field and learned with YOLOv4 to propose a collision risk object detection system through object detection. The accuracy of the dangerous situation rule violation was 88% indoors and 92% outdoors. Through this system, it is thought that it will be possible to analyze safety accidents that occur in industrial sites in advance and use them to intelligent platforms research.

A Study on the Improvement of Construction Site Worker Detection Performance Using YOLOv5 and OpenPose (YOLOv5 및 OpenPose를 이용한 건설현장 근로자 탐지성능 향상에 대한 연구)

  • Yoon, Younggeun;Oh, Taekeun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.735-740
    • /
    • 2022
  • The construction is the industry with the highest fatalities, and the fatalities has not decreased despite various institutional improvements. Accordingly, real-time safety management by applying artificial intelligence (AI) to CCTV images is emerging. Although some research on worker detection by applying AI to images of construction sites is being conducted, there are limitations in performance expression due to problems such as complex background due to the nature of the construction industry. In this study, the YOLO model and the OpenPose model were fused to improve the performance of worker detection and posture estimation to improve the detection performance of workers in various complex conditions. This is expected to be highly useful in terms of unsafe behavior and health management of workers in the future.

Case Study of Building a Malicious Domain Detection Model Considering Human Habitual Characteristics: Focusing on LSTM-based Deep Learning Model (인간의 습관적 특성을 고려한 악성 도메인 탐지 모델 구축 사례: LSTM 기반 Deep Learning 모델 중심)

  • Jung Ju Won
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.65-72
    • /
    • 2023
  • This paper proposes a method for detecting malicious domains considering human habitual characteristics by building a Deep Learning model based on LSTM (Long Short-Term Memory). DGA (Domain Generation Algorithm) malicious domains exploit human habitual errors, resulting in severe security threats. The objective is to swiftly and accurately respond to changes in malicious domains and their evasion techniques through typosquatting to minimize security threats. The LSTM-based Deep Learning model automatically analyzes and categorizes generated domains as malicious or benign based on malware-specific features. As a result of evaluating the model's performance based on ROC curve and AUC accuracy, it demonstrated 99.21% superior detection accuracy. Not only can this model detect malicious domains in real-time, but it also holds potential applications across various cyber security domains. This paper proposes and explores a novel approach aimed at safeguarding users and fostering a secure cyber environment against cyber attacks.

Detection of Wildfire Smoke Plumes Using GEMS Images and Machine Learning (GEMS 영상과 기계학습을 이용한 산불 연기 탐지)

  • Jeong, Yemin;Kim, Seoyeon;Kim, Seung-Yeon;Yu, Jeong-Ah;Lee, Dong-Won;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.967-977
    • /
    • 2022
  • The occurrence and intensity of wildfires are increasing with climate change. Emissions from forest fire smoke are recognized as one of the major causes affecting air quality and the greenhouse effect. The use of satellite product and machine learning is essential for detection of forest fire smoke. Until now, research on forest fire smoke detection has had difficulties due to difficulties in cloud identification and vague standards of boundaries. The purpose of this study is to detect forest fire smoke using Level 1 and Level 2 data of Geostationary Environment Monitoring Spectrometer (GEMS), a Korean environmental satellite sensor, and machine learning. In March 2022, the forest fire in Gangwon-do was selected as a case. Smoke pixel classification modeling was performed by producing wildfire smoke label images and inputting GEMS Level 1 and Level 2 data to the random forest model. In the trained model, the importance of input variables is Aerosol Optical Depth (AOD), 380 nm and 340 nm radiance difference, Ultra-Violet Aerosol Index (UVAI), Visible Aerosol Index (VisAI), Single Scattering Albedo (SSA), formaldehyde (HCHO), nitrogen dioxide (NO2), 380 nm radiance, and 340 nm radiance were shown in that order. In addition, in the estimation of the forest fire smoke probability (0 ≤ p ≤ 1) for 2,704 pixels, Mean Bias Error (MBE) is -0.002, Mean Absolute Error (MAE) is 0.026, Root Mean Square Error (RMSE) is 0.087, and Correlation Coefficient (CC) showed an accuracy of 0.981.

Performance Evaluation of Monitoring System for Sargassum horneri Using GOCI-II: Focusing on the Results of Removing False Detection in the Yellow Sea and East China Sea (GOCI-II 기반 괭생이모자반 모니터링 시스템 성능 평가: 황해 및 동중국해 해역 오탐지 제거 결과를 중심으로)

  • Han-bit Lee;Ju-Eun Kim;Moon-Seon Kim;Dong-Su Kim;Seung-Hwan Min;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1615-1633
    • /
    • 2023
  • Sargassum horneri is one of the floating algae in the sea, which breeds in large quantities in the Yellow Sea and East China Sea and then flows into the coast of Republic of Korea, causing various problems such as destroying the environment and damaging fish farms. In order to effectively prevent damage and preserve the coastal environment, the development of Sargassum horneri detection algorithms using satellite-based remote sensing technology has been actively developed. However, incorrect detection information causes an increase in the moving distance of ships collecting Sargassum horneri and confusion in the response of related local governments or institutions,so it is very important to minimize false detections when producing Sargassum horneri spatial information. This study applied technology to automatically remove false detection results using the GOCI-II-based Sargassum horneri detection algorithm of the National Ocean Satellite Center (NOSC) of the Korea Hydrographic and Oceanography Agency (KHOA). Based on the results of analyzing the causes of major false detection results, it includes a process of removing linear and sporadic false detections and green algae that occurs in large quantities along the coast of China in spring and summer by considering them as false detections. The technology to automatically remove false detection was applied to the dates when Sargassum horneri occurred from February 24 to June 25, 2022. Visual assessment results were generated using mid-resolution satellite images, qualitative and quantitative evaluations were performed. Linear false detection results were completely removed, and most of the sporadic and green algae false detection results that affected the distribution were removed. Even after the automatic false detection removal process, it was possible to confirm the distribution area of Sargassum horneri compared to the visual assessment results, and the accuracy and precision calculated using the binary classification model averaged 97.73% and 95.4%, respectively. Recall value was very low at 29.03%, which is presumed to be due to the effect of Sargassum horneri movement due to the observation time discrepancy between GOCI-II and mid-resolution satellite images, differences in spatial resolution, location deviation by orthocorrection, and cloud masking. The results of this study's removal of false detections of Sargassum horneri can determine the spatial distribution status in near real-time, but there are limitations in accurately estimating biomass. Therefore, continuous research on upgrading the Sargassum horneri monitoring system must be conducted to use it as data for establishing future Sargassum horneri response plans.

Effects of Consistency Criterion for Scoring on the Reliability and the Validity of Polygraph Test for Crime Suspects (범죄 용의자의 거짓말탐지검사의 신뢰도와 타당도에 대한 일관성 채점기준의 효과)

  • Han, Yu-Hwa;Jeong, Je-Young;Park, Kwang-Bai
    • Science of Emotion and Sensibility
    • /
    • v.12 no.4
    • /
    • pp.557-564
    • /
    • 2009
  • For scoring polygraph charts, the Prosecutors' Office of the Republic of Korea uses a consistency criterion in which an elevated signal on one physiological channel is scored as a deceptive response only if the signal is also elevated on other channels. In the current study, the effects of this scoring criterion on reliability and accuracy (validity) of polygraph scores were assessed. Polygraph tests on 26 suspects were evaluated twice by the same examiners. The examiners used the consistency criterion in the first evaluation. In the second evaluation, the examiners were prevented from using the criterion; the signals from each physiological channel were separated and randomly arranged before they were rescored by the same examiner. Reliability was assessed by the variation among the scores for each suspect. Accuracy was assessed by establishing a standard, based on a Latent Class Analysis model, using the results of polygraph tests on each of 182 additional suspects. Reliability and accuracy were both improved by the use of the consistency criterion which therefore was recommended.

  • PDF