• Title/Summary/Keyword: 원형 평판

Search Result 115, Processing Time 0.024 seconds

Forward-Looking Ultrasound Imaging Transducer : I. Analysis and Design (전향 초음파 영상 트랜스듀서 : I. 해석 및 설계)

  • Lee, Chan-Kil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.73-86
    • /
    • 1995
  • The transducer section of the forward-looking ultrasound imaging catheter (FLUIC) consists of a circular piezoelectric element as a vibrator and a conical acoustic mirror as a perfect reflector. A small diameter piezoelectric transducer element is mounted on the side of a catheter's rotating shaft. The unique design of FLUIC provides the capability to form a two-dimensional image of a cross-section of vessel in front of the catheter, which is lacking in the present generation of intravascular ultrasound (IVUS) transducers, as well as a conventional side view image. The mirror configuration for the transducer section of the FLUIC is designed using an approximated ray tracing techniques. The diffraction transfer function approach [1] developed for the field prediction from primary sources is generalized and extended to predict the secondary diffraction characterstics from an acoustic mirror. The extended model is verified by simulation and experiment through a simple plane reflector and employed to analyzed the field characteristics of a FLUIC.

  • PDF

Heat Transfer on Slot Film Cooling for Convergent Nozzle (축소노즐내 슬롯 막냉각에서의 열전달 특성)

  • 조용일;유만선;정학재;조형희
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.1
    • /
    • pp.34-41
    • /
    • 2001
  • A study has been conducted to observe the slot film cooling effect on a convergent nozzle wall. The slot film cooling is used to protect the nozzle wall from the hot combusted gas by the coolant injected from the slot around the inner wall of the nozzle. The film cooling effectiveness and the heat transfer to the nozzle wall are influenced significantly by the blowing ratio of the coolant to the main flow and those are also influenced by the shape of the slot and the flow acceleration in the nozzle. In the present study, the heat transfer for the various blowing ratios has been performed by the experimental method and the results are compared with the results computed by the empirical formula. The numerical method has been conducted to compare the film cooling effectiveness of the convergent nozzle with that of the cylinder. For the relatively low blowing ratio, the cooling effectiveness increases sharply as the blowing ratio increases, and the increasing rate slows down for the high blowing ratio.

  • PDF

Numerical Analysis of Concentration Polarization for Spacer Configuration in Plate Type Membrane Module (평판형 분리막 모듈 내 스페이서 형태에 따른 농도분극에 관한 수치해석)

  • Shin, Ho Chul;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.703-710
    • /
    • 2011
  • As the spacer in the membrane module provide the channel space to flow the feed solution smoothly and induce the flow turbulence, it could help to reduce both the concentration polarization and to take the long-term operation of membrane modules with high permeate flux by mixing the accumulated contaminants on the membrane surface into the bulk solution. In this study, the concentration distribution in membrane module with respect to the spacers which have the cross-sectional shapes of circle, cross, diamond and hexagon, the angles of spacer configuration, solute rejection and permeate flux were interpreted and optimized numerically using the "COMSOL Multiphysics" software. The concentration on the membrane surface was kept the lowest level for the cross-shape among the above four types of spacers. Also the 30 degree spacer configuration was showed as the most efficient case. The concentrations on the membrane surface at the module outlet for without spacer and the cross shape with the 30 degree spacer configuration were 2.09 and 1.29 times higher than those at inlet, respectively. The reduction effect of concentration polarization increased rapidly as the permeate flux increased.

Design and Fabrication of a Field Mill for Ground-Level Electric Field Measurement (대지전계 측정을 위한 필드밀의 설계 및 제작)

  • Kil, Gyung-Suk;Song, Jae-Yong;Kim, Il-Kwon;Kwon, Jang-Woo;Ahn, Chang-Hwan;Lee, Young-Keun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.52-59
    • /
    • 2007
  • A field mill capable of measuring the magnitude and polarity of electric fields at the ground level was studied to apply to a lightning warning system as a sensor. We designed and fabricated a planar-shutter type field mill with a rotating-vanes. A calibration of the field mill was performed in a vertically symmetrical arrangement which consists of two equal size parallel round plates to form a homogeneous electrical fields. The sensitivity of the field mill was adjusted at 0.5[V/kV/m], and this covers a ranges from 200[V/m] to 20[kV/m]. After the calibration experiment, the field mill was installed on the roof of a building to measure the changes of electric field intensity caused by thunderclouds. During the period from July 1. 2006 to July 15. 2006, the electric field intensity was recorded a ranges of $+2[kV/m]{\sim}-6[kV/m]$ depending on generation, extinction and movement of thunderclouds. From the actual test on the ground it is confirmed that the field mill has a good performance necessary for the measurement of DC electric fields.

A Practical Algorithm to Simulate Erosion of On-Shore Zone (실용적 해안선 후퇴 반영 알고리즘)

  • Kim, Hyoseob;Lee, Jungsu;Jin, Jae-Youll;Jang, Changhwan
    • Journal of Wetlands Research
    • /
    • v.15 no.3
    • /
    • pp.423-430
    • /
    • 2013
  • An algorithm to allow shoreline movement during numerical experiment on sediment transport, deposition or resuspension for general coastal morphology is proposed here. The bed slope near shoreline, i.e. mean sea level, is influenced by bed material, tidal current, waves, and wave-induced current, but has been reported to remain within a stable range. Its annual variation is not large, either. The algorithm is adjusting the bathymetry, if the largest bed slope within shoreline band exceeds a given bed slope due to continuous erosion at zones below the shoreline. This algorithm automatically describes retreat of shoreline caused by erosion, when used within a numerical system. The algorithm was tested to a situation which includes a continuous dredging at a point, and showed satisfactory development of concentric circle contours. Next, the algorithm was tested to another situation which includes sinking of eroded part of bed plate, and produced satisfactory results, too. Finally, the algorithm was tested to a movable-bed laboratory experimental conditions. The shoreline movement behind detached breakwater was reasonably reproduced with this algorithm.