• Title/Summary/Keyword: 원형 균열

Search Result 94, Processing Time 0.028 seconds

Numerical study on rock splitting using the cylindrical cavity (원형 자유면을 이용한 암반 파쇄의 수치해석적 연구)

  • Ahn, Sung Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1013-1028
    • /
    • 2017
  • This paper presents key findings obtained from the numerical experiment investigating into the use of the cylindrical cavity for rock splitting operations. The stress and strain path analyses were carried out in order to provide a better insight into the crack formation. The principal stress analysis carried out along the crack line using the results obtained from these numerical analyses allowed the failure of the brittle material and the crack propagation to be investigated. This paper also suggested possible reasons for the change in crack direction observed during the rock splitting operations using the results obtained.

Evaluation of Effective Section Area of Shear Steel in Reinforced Concrete Circular Columns (철근콘크리트 원형기둥의 전단철근 유효단면적 평가)

  • 김장훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.81-88
    • /
    • 1999
  • In order to properly evaluate the shear strength of reinforced concrete circular columns due to the transverse shear reinforcement, the average of fractions of forces generated along the circular transverse hoops across the shear failure plane in the loading direction is calculated. For this, the center-to-center diameter of circular transverse hoops. spacing and the crack angle measured to the column longitudinal axis are considered. Using these variables, an equation representing the effective section area of circular transverse shear steel is proposed. The study result shows that the constant parameter. used for the calculation of the effective section area of circular hoops over the last 10 years, should not universally be applied any more. The use of the constant parameter may not seriously do harm to the evaluation of shear strength for circular columns with non-seismically designed transverse hoop reinforcement, since it gives slightly conservative results. However. for well-confined circular columns with close spacing or circular steel jacketing. it gives about 20% overestimation of the shear capacity contributed by the transverse hoop steel.

Application of L Integral to Interface Crack Problems (계면균열 문제에 대한 L적분의 응용)

  • 박재학;엄윤용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.34-42
    • /
    • 1986
  • An interface of a circular arc formed by two isotropic, homogeneous elastic materials is investigated. It is shown that L integral satisfies the conservation law for the interface if it is perfectly bonded, in frictionless contact or separated such as in a crack with the origin of the coordinate system being located at the center of the circular arc. The property of path independence of the L integral is applied to an interfacial crack problem, to obtain the stress intensity factors, where the interfacial crack is located along the arc of the circular inclusion embedded in infinite matrix. It is assumed here that the contact zone exist as in the model proposed by Comninou, thus removing the overlapping of the materials along the interface. Another example is shown for case of a circular interfacial crack in the matrix of finite size, where the stress intensity factors are determined by computing a value of the L integral numerically along the path far from the crack tip.

Impact Damage of Brittle Materials by Small Spheres (ll ) (취성재료의 소구충돌에 의한 충격손상 (ll))

  • Kim, Mun-Saeng;Sin, Hyeong-Seop;Lee, Hyeon-Cheol;U, Su-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.153-159
    • /
    • 2002
  • Brittle materials such as ceramics and glasses show fragile fracture due to the low toughness and the crack sensitivity. When brittle materials are subjected to impact loading by small spheres, high contact pressure occurs to the surface of the specimen. Local damage is subsequently generated in the specimen. This local damage is a dangerous factor which gives rise to the final fracture of structures. In this research, impact damage of soda-lime glass plates by small spheres was evaluated by considering the effects of impact directions of indenter, pressure condition of specimen and residual strength after impact loading.

A Study on the Stability of Twin Tunnels in Anisotropic Rocks Using Scaled Model Tests (이방성 암반내 쌍굴터널의 안정성에 대한 모형실험 연구)

  • Kim, Jong-Woo;Kim, Myeong-Kyun
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.205-213
    • /
    • 2012
  • In this study, scaled model tests were performed to investigate the stability of twin tunnels constructed in anisotropic rocks with $30^{\circ}$ inclined bedding planes under the condition of lateral pressure ratio, 2. Five types of test models which had respectively different pillar widths and shapes of tunnel sections were experimented, where both crack initiating pressures and deformation behaviors around tunnels were investigated. The models with shallower pillar width showed shear failure of pillar according to the existing bedding planes and they were cracked under lower pressure than the models with thicker pillar width. In order to find the effect of tunnel sectional shape on stability, the models with four centered arch section, circular section and semi-circular arch section were experimented. As results of the comparison of the crack initiating pressures and the deformation behaviors around tunnels, the semi-circular arched tunnel model was the most unstable whereas the circular tunnel model was the most stable among them. Furthermore, the results of FLAC analysis were qualitatively coincident with the experimental results.

Determination of Bond Strength and Fracture Energy of a Bi-material Cylinder with Peny-shaped Interface Crack by Pull-off Test (직접인장시험에 의한 원형 비부착면이 삽입된 신.구 콘크리트의 부착강도 및 파괴에너지 산정)

  • Yang, Sung-Chul;Kim, Jin-Chul;Park, Jong-Won
    • International Journal of Highway Engineering
    • /
    • v.6 no.1 s.19
    • /
    • pp.47-56
    • /
    • 2004
  • To determine the pure bond strength between substrate and its overlayed concrete material, a direct pull-off test method was introduced by using a bi-material cylinder with which a penny-shaped crack was mountained at its interface. First, to evaluate the stress magnification or concentration at the interface, the energy release rates of a penny-shaped interface crack in remote tension loading on a bi-material cylinder were determined in terms of different modulus ratios and undonded area ratios(crack ratios) using a commercial finite element program. Then the energy release rates were calibrated as non-dimensional values in consideration of structural dimensions and applied forces. And to evaluate whether this new pull-off test method gives sound test results, three different sizes of unbended area ratios were incorporated along their interface in bi-material cylinders(sulphur polymer concrete + old concrete). Test results showed that all specimens were broken off at their interfaces as intended. Also the FEM analyses and test results indicated that a bi-material specimen with unbended area ratio of 0.4$\sim$0.6 is suitable for best accurate testing.

  • PDF

Reinforcement Effect of Cracked Concrete Tubes and Box Culverts by Installing Profile with Steel Stiffener and High Strength Mortar (스틸보강재가 부착된 프로파일 및 고강도 모르타르를 이용한 균열손상 콘크리트관의 보강효과)

  • Yeo, Sang Rok;Cho, Eun Sang;Hwang, Won Sup;Jeong, Jae Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.69-78
    • /
    • 2008
  • In this study, in order to verify the reinforcement effects of the cracked concrete tubes and culverts, static load test was conducted. After the load carrying capacity of the original concrete tubes (nominal diameter 0.8 m, 1.0 m, 1.5 m) and box culverts (inner width 2.0 m. 2.5 m) was reduced by the cracking test, the cracked concrete specimens were strengthened by installing profile with steel stiffener and high strength mortar. And then, the maximum load tests were conducted the renewal concrete tubes and box culverts. According to the method application, the load carrying capacity increased 1.66~3.50 times than it of the original tubes before applying the method. In case of the original box culverts, the load carrying capacity increased 1.66~3.10 times than the case before installing profile and high strength mortar. Also non-linear analysis was carried out by using the commercial FEM program of ABAQUS 6.6. Solid (C3D8R) elements and concrete damage plasticity option was applied to the analysis. For reflecting confined reinforcing bars in the analysis, the composite material properties were used.

탄성정수 및 입사파형의 변화에 따른 암반 내 균열전파양상에 관한 수치해석적 연구

  • Park, Seung-Hwan;Jo, Sang-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.155-159
    • /
    • 2009
  • Crack-controlled method which utilizes the dynamic energy such as explosives and propellent gases have been applied to the development of mineral resource and oil and civil engineering. It is necessary to consider the fracture processes associated with the material properties and external forces to control crack propagation using borehole pressure. To investigate the influence of the applied borehole pressure waveform on the crack propagation in rock masses having different material properties, a no-free surface model was used, consisting of a borehole in rock with a continuous boundary. Loading rates ranging from 1 to 100MPa/${\mu}s$ with different rock mass properties was employed to investigate the loading rate dependency of fracture patterns in the rock mass.

  • PDF

Fatigue Behavior of Before-and-After Penetration of Aluminium Plate with Long Surface Crack (긴 균열을 갖는 알루미늄판재의 관통전후 피로거동)

  • Nam Ki-Woo;Lee Jong-Rark;Ahn Seok-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • Fatigue behavior of before-and-after penetration was examined experimentally using surface pre-cracked specimens of aluminium alloy 5083-0. The fatigue crack shape before penetration is almost semicircular, and the measured aspect ratio is larger than the value obtained by calculation using K values proposed by Newman-Raju. It is found that the crack growth behavior on the back side after penetration is unique and can be divided into three stages. By using a crack propagation rule in case of long surface crack, the change in crack shape after penetration can be evaluated quantitatively.

  • PDF

Fiber Orientation Factor on a Circular Cross-Section in Concrete Members (콘크리트 원형단면에서의 섬유분포계수)

  • Lee, Seong-Cheol;Oh, Jeong-Hwan;Cho, Jae-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.307-313
    • /
    • 2014
  • In order to predict the post-cracking tensile behavior of fiber reinforced concrete, it is necessary to evaluate the fiber orientation factor which indicates the number of fibers bridging a crack. For investigation of fiber orientation factor on a circular cross-section, in this paper, cylindrical steel fiber reinforced concrete specimens were casted with the variables of concrete compressive strength, circular cross-section size, fiber type, and fiber volumetric ratio. The specimens were cut perpendicularly to the casting direction so that the fiber orientation factor could be evaluated through counting the number of fibers on the circular cross-section. From the test results, it was investigated that the fiber orientation factor on a circular cross-section was lower than 0.5 generally adopted, as fibers tended to be perpendicular to the casting direction. In addition, it was observed that the fiber orientation factor decreased with an increase of the number of fibers per unit cross-section area. For rational prediction of the fiber orientation factor on a circular section, a rigorous model and a simplified equation were derived through taking account of a possible fiber inclination angle considering the circular boundary surface. From the comparison of the measured data and the predicted values, it was found that the fiber orientation factor was well predicted by the proposed model. The test results and the proposed model can be useful for researches on structural behavior of steel fiber reinforced columns with a circular cross-section.