• Title/Summary/Keyword: 원형충돌제트

Search Result 39, Processing Time 0.045 seconds

Instabilities of High-speed Impinging Circular Jets(2) (고속 원형충돌제트의 불안정 특성 (2))

  • 임정빈;김현중;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.486-491
    • /
    • 1998
  • 본 연구에서는 충돌면의 형상에 따른 고속 원형 충돌제트의 불안정 모드를 밝히기 위하여 우선 충돌면의 형상에 따른 주파수 특성을 비교하고자 하였다. 이를 위해 충돌면이 제트의 직경보다 작은 원판(small plate)과 제트의 직경보다 큰 구멍(hole)의 2가지 경우에 대하여 실험을 하였고, 평판 충돌음에 대한 연구결과와 비교 검토하였다.

  • PDF

The Study of Heat Transfer on a Isothermal Circular Surface by an Impinging, Circular Water Jets with the Low Velocity Against the Direction of Gravity (중력방향과 대향류인 저속 원형노즐제트 충돌에 의한 일정 두께 하향 등온원형평판에서의 열전달 현상)

  • Eom, Yongkyoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.4
    • /
    • pp.449-458
    • /
    • 2014
  • The heat transfer phenomenon was investigated in this study when a single round water jet with the low velocity and against the direction of gravity flows to the downward facing Isothermal of definite thickness circular plate. Experimental investigation is performed for a single round jet diameter 4mm, 6mm, and 8mm with the jet velocity 2.4m/s and jet fluid temperature of $24^{\circ}C$, varied the ratio of nozzle clearance/nozzle diameter (H/D)1, 2, 3, 6, and 8, on circular plate isothermal condition with $85^{\circ}C$. The local convection heat transfer coefficient distributions are analyzed based on the visualization of jet flow field. The effects of the diameter of Nozzle, the ratio of H/D and the ratio of nozzle diameter/circular plate diameter on heat transfer phenomenon are investigated. As a results of experiment is obtained correlation equation, $Nu_r=3.18Re_r^{0.55}Pr_r^{0.4}$.

Heat Transfer Characteristics of a Slot Jet and Circular Jets Impinging on a Flat Surface (벽면에 충돌하는 슬롯형 제트와 원형 제트의 열전달 효과 비교)

  • Kim, Hui-Hyun;Kim, Dae-Seong;Yoon, Soon-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.540-545
    • /
    • 2001
  • An experimental study was conducted to compare the heat transfer characteristics of an impinging slot jet and three kinds of impinging circular jets. Thermochromic liquid crystal with an image processing system was employed to measure the temperature of impinging wall where constant heat flux condition was applied. The distribution of convective heat transfer coefficients were then evaluated for eight nozzle-to-surface distance settings for each jet cases. The cooling effect was linearly proportional to the number of nozzles for circular jet cases at the same nozzle exit speed. However, the heat transfer under constant volume flow rate was the most at single circular jet. It was concluded that the overall convective heat transfer was better at the circular jets than the slot jet.

  • PDF

Effect of Nozzle Configuration and Impinging Surface on the Impinging Tone Generation by Circular Jets (충돌면과 노즐의 형상이 원형충돌제트에 의한 충돌순음 발생에 미치는 영향)

  • Im, Jung-Bin;Kwon, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.693-700
    • /
    • 2003
  • The effect of the configuration of the nozzle and the impinging surface on the characteristics of the hole-tones has been experimentally investigated. It is found that the plate-tone is a special case of hole-tones, where the hole diameter is zero. The jet velocity range for hole-tones is divided into the low velocity region associated with laminar jet and the high velocity region with turbulent jet. The frequency of the tone is that for the shear layer instability at the nozzle exit or that attainable by a cascade of vortex pairing process with increase of the impinging distance. When the distance is longer than one diameter the frequency decreases to the terminal value near the preferred frequency of the column mode instability, in the range 0.23< $St_d$<0.53, where $St_d$ is the Strouhal number defined by $fd/U_J$, f the frequency, d the nozzle diameter, and $U_J$ the exit velocity. While the convection speed of the downstream vortex, in the present study, is almost constant at low-speed laminar jet, it increases with distance at high-speed turbulent jet. As the frequency increases, the convection speed decreases in the low frequency range corresponding to the preferred mode, in agreement with the existing experimental data for a free jet.

The Study of Heat Transfer on a Heated Circular Surface by an Impinging, Circular Water Jet with the Low Velocity Against the Direction of Gravity (중력방향과 대향류인 저속 원형노즐 제트충돌에 의한 원형평판에서의 열전달 현상)

  • Kim, Ki-Tae;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.983-991
    • /
    • 2009
  • The heat transfer phenomenon was investigated in this study when a circular water jet with low velocity flows to the downward facing heated circular plate and against the direction of gravity. Data are presented for jet flow rate between 0.23 and 2.3 l/min, jet fluid temperature of 24$^{\circ}C$, heat fluxes between 345 and 687 W/m$^2$, H/D=1, 2 and 3 with a single round jet diameter 2mm. The effects of heat flux, jet velocity and H/D on the local heat transfer are investigated in for the various regions of jet impingement. The local heat transfer distributions are analyzed based on the visualization of jet flow field. Data from experimental results are correlated by expressions of the form Nu=0.01$Re^{0.58}{\cdot}Pr^{0.4}$.

Flow and Temperature Characteristics in a Circular Impinging Jet (원형 충돌 제트에서의 유동 및 온도 특성)

  • Kim Jungwoo;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.237-240
    • /
    • 2002
  • In the present study, we perform LES of turbulent flow and temperature fields in a circular impinging jet at Re=5000 for two cases of H/D=2 and 6 (H denotes the distance between the jet exit and flat plate, and D does the diameter of the jet exit). In the case of H/D=2, the regular vortical structures observed in free jet do not exist because of the smaller distance than the potential core. The Nusselt number on the wall is largest at $r/D{\cong}10.67$ where vortex rings Impinge. At $r/D{\cong}1.5{\~}2.0$, the vortex rings induce the secondary vortices, resulting in a secondary peak in the Nusselt number there. In the case of H/D=6, the vortex rings change into three-dimensional vortical structures and the small-scale vortices impinge on the flat plate. The increase of turbulent intensity due to small-scale vortices results in the largest Nusselt number at the stagnation point.

  • PDF

Flow and Heat Transfer Characteristics of Impinging Single Circular Swirl Jet on Flat Plate (원형 선회류제트 충돌면에서의 유동 및 열전달 특성)

  • Jang, Jong-Chul;Jeon, Young-Woo;Park, Si-Woo;Chung, In-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.118-125
    • /
    • 2004
  • The experimental study on flow and heat transfer characteristics was conducted to investigate and to compare the performance of swirl jet by a twisted tape as a swirl generator with the performance of impinging single circular jet in fully developed flow tube. The effects of jet Reynolds number(Re=8700, 13800, 20000, 26500), dimensionless distance of nozzle-to-plate(H/d=2, 4, 6, 8) and swirl ratio(S=0.11, 0.23, 0.30) of the jet on the local and average Nusselt number have been examined. Measurements of local heat transfer rate and flow patterns on the jet impinging plate were used naphthalene sublimation technique and flow visualization technique respectively. Mean velocity and turbulence intensity of the jet along the centerline were measured. With a twisted tape in the nozzle exit, average Nusselt number at the around area of stagnation point were higher than those without the twisted tape at H/d=2, 4 and with the increase of Reynolds number. With a twisted tape in the nozzle, in the case of H/d=2, Re=26500 and S=0.11, maximum local Nusselt number at the region of y/d=0 and x/d=0.44 was obtained.

Instability of High-Speed Impinging Jets(I) (고속 충돌제트의 불안정특성)

  • Gwon, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.452-458
    • /
    • 1998
  • The objective of this study is to obtain the unstable characteristics of the high-speed two-dimensional jet impinging normally onto a flat plate. The study is based on the feedback model and the experiment of the frequency characteristics of the impinging tones. Using the experimental data for the tonal frequencies of the impinging tones the convection speed of the unstable jet is obtained along with all the other features. Three kinds of unstable modes are clarified: asymmetric $A_{1}$ and $A_{2}$ and symmetric S. The condition for the excitation of each mode is found in terms of Strouhal number and Reynolds number. The convection speed is estimated and discussed in comparison with existing theoretical models. It is found that the convection speed increases with frequency when the mode is asymmetric, but decreases when it is symmetric. In addition, the characteristics of the high-speed impinging jet are compared with the low-speed impinging jet.

Instability Characteristics of Circular Jets Producing Hole-Tones (Hole-Tone의 발생과 원형제트의 불안정 특성)

  • 임정빈;권영필
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.1005-1011
    • /
    • 1999
  • Generation of hole-tones and the instability of circular impinging jets are investigated based on the frequency characteristics and the radiated sound field. The experiment is carried out with varying hole sizes, jet speeds and impinging distances. It is found that hole-tones occur by both the low-speed laminar jet and the high-speed turbulent jet, but not by the transient jet, while plate-tones without holes are produced only in the high-speed turbulent impinging jet. When the diameter ratio of the hole to the nozzle is nearly one, hole-tones occur most easily. At low speed, it is found that hole-tones are due to the symmetrical unstable jet and the impinging distance decreases with jet speed. And the Strouhal number and the sound pressure level increase with jet speed. At high speed, hole-tones show the same characteristics as plate-tones. It is found that the ratio of the convection speed varies with the Strouhal number and the jet speed.

  • PDF