• Title/Summary/Keyword: 원형주상체

Search Result 14, Processing Time 0.016 seconds

Study of Nonlinear Wave Diffraction Using the 2-Dimensional Numerical Wave Tank (2차원 수치 파수조를 이용한 비선형파 산란의 연구)

  • 김용직
    • Journal of Ocean Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.9-18
    • /
    • 1993
  • Numerical wave tank is a robust tool by which the nonlinear interactions between the body and the free-surface can be treated in time-domain. In this paper, a two-dimensional numerical wave tank based on the Spectral/Boundary-Element Method is developed, and applied successfully to the study of nonlinear wave diffraction around a submerged circular cylinder. Particularly, it is shown that the high-order wave components of significant wave height are developed in the lee-side of the cylinder and that these waves result in a negative drift force on the circular cylider.

  • PDF

Numerical Simulation on Laminar Flow past a Rotating Circular Cylinder (회전하는 원형 주상체 주위의 층류 유동장의 수치 시뮬레이션)

  • MooN JIN-KooK;PARK JONG-CHUN;YOON HYUN-SIK;CHUN HO-HWAN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.222-228
    • /
    • 2004
  • The effects of rotation on the unsteady laminar flow past a circular cylinder is numerically investigated in the present study. We obtained the numerical solutions for unsteady two-dimensional governing equation for the flow using two different numerical schemes. One is an accurate spectral method and another is finite volume method. Above all, the flow around a stationary circular cylinder is investigated to understand the basic phenomenon of flow separation, bluff body wake. Also, the validation of our own codes, expecially based on FVM, is carried out by the comparison of results obtained from our simulations using two different schemes and previous numerical and experimental studies. By the effect of rotation, the mean lift increases and drag deceases, which well represent the previous study.

  • PDF

A Study on the W-Ti Absorber Properties with Various Ti Composition for X-ray Lithography Mask (Ti 함량 변화에 따른 X선 노광 마스크용 W-Ti 흡수체의 물성 연구)

  • Kim, Gyeong-Seok;Lee, Gyu-Han;Im, Seung-Taek;Lee, Seung-Yun;An, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.10 no.3
    • /
    • pp.218-222
    • /
    • 2000
  • W-Ti film properties for X-ray absorber applications have been investigated with Ti composition have been investigated with Ti composition variation. W-Ti films were deposited by DC magnetron sputtering system. As the working pressure increases, film density decreases and film stress changes from compressive to tensile. The transition pressure (where the film stress in zero) and the stress gradient decrease by adding Ti into W-Ti(6.5 at.%) film shows the smallest stress gradient and transition pressure. It also shows high density ($17.7g/\textrm{cm}^3$) similar to that of pure-W ($17.8g/\textrm{cm}^3$) at the transition pressure. All the films show columnar structure, and its size decreases with increasing Ti composition. Surface roughness and thermal stability are improved by Ti-addition, resulting in a better property for X-ray absorber applications.

  • PDF

An Experimental Study on Optimum Slanting Angle in Reticulated Root Piles Installation (그물식 뿌리말뚝의 최적 타설경사각에 관한 실험 연구)

  • 이승현;김병일
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 1995
  • Load testis are executed on model reticulated root piles (RRP) to figure out the optimum slanting angle in the piles installation. One set of model RRP consists of 8 slanting piles which are installed in circular patterns forming two concentric circles, each of which is made by 4 piles. Each pile which is a steel bar of 5m in diameter and 300mm in length is coated to become a pile of 6.5mm in diameter. The slanting angle of the model RRP varies from 0$^{\circ}$ to 20$^{\circ}$ Comparing ultimate bearing capacities of the model RRP of different installation angles, it is observed that the ultimate capacities of the RRP increase as the installation angle increases until 15$^{\circ}$, and the optimum slanting angle of the RRP is around 15$^{\circ}$ The ultimate bearing capacity of the 15$^{\circ}$-RRP is found to be 22% bigger than that of the vertical RRP and 120% bigger than that of the circular surface footing whose diameter is same with the circle formed by outer root piles'heads. However, it is noticed that when the slanting angle of the RRP is increased over 15$^{\circ}$, the ultimate capacity starts to be reduced. The ultimate capacity of 20$^{\circ}$-RRP is even smaller than that of the vertical RRP by as much as 5%. From the observation of the load settlement curve obtained during the RRP load tests, it is known that as the slanting angle gets bigger the load -settlement behavior becomes more ductile.

  • PDF