• Title/Summary/Keyword: 원통형 캐비티

Search Result 6, Processing Time 0.021 seconds

Characteristics of Radiated Electromagnetic Fields From A Cylindrical Cavity (원통형 캐비티에서 방출되는 방사 전자파 특성)

  • Kim, Hyo-Gyun;Cho, Jun-Ho;Lim, Dong-young;Kim, Ki-Chai
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.237-244
    • /
    • 2016
  • This paper, presents the characteristics of electromagnetic fields radiated from a pole-transformer. The cylindrical cavity is used to measure electromagnetic fields radiated from a pole-transformer when partial discharge occures inside the pole-transformer. The theoretical analysis is conducted by a finite difference time domain (FDTD) method. As a result, frequency characteristics of the radiated electromagnetic waves emitted from the inside the cavity to the outside through the 1st and 2nd bushings could be observed for the configuration of the cylindrical cavity with a radiation window. The frequency characteristics of electromagnetic field are also studied according to the enclosure structure of the cylindrical cavity. To verify the theoretical analysis, computed results are compared to experimental results.

A Study on High-Power Handling Capability of X-Band Circular Waveguide Cavity Filter (X-대역 원통형 도파관 캐비티 필터의 고전력 핸들링 능력 연구)

  • Lee, Sun-Ik;Kim, Joong-Pyo;Lim, Won-Gyu;Kim, Sang-Goo;Lee, Pil-Yong;Jang, Jin-Baek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.49-60
    • /
    • 2017
  • In this paper, we presented the result of the study on high-power handling capability of the X-band circular waveguide cavity filter configured at the output of high power amplifier(120 W) for geostationary satellites. The dual mode circular waveguide cavity filter with 6th order is selected and the physical model of the filter is designed after determination of the size of resonator from mode chart. Multipactor margin analysis is performed by the SEM method and the VMF method. The result shows that the VMF method predicts lower multipactor breakdown thresholds than the SEM method. Evaluating the multipactor margin obtained by the VMF method to ECSS criteria, we could decide to perform multipactor test. The multipactor test conducted in ESA facility shows that multipactor did not occur even until the RF power increased up to 540 W. In consequence, by both analysis and test, we could verify that the X-band circular waveguide cavity filter has the sufficient high-power handling capability to operate on orbit.

Study on 5.8 GHz DR Duplexer using Cavity Filter (캐비티 필터를 이용한 5-8 GHz DR 듀플렉서의 연구)

  • 배창호;조평동;조병훈;김영성;장호성
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12B
    • /
    • pp.1712-1723
    • /
    • 2001
  • This paper presents a design procedure and manufacturing techniques realizing of a 5.8 GHz duplexer based on cylindrical coaxial dielectric resonator. Upto Q$\times$f$\_$o/=30,000 cylindric coaxial dielectric resonator was developed control by addition of dielectric materials. This resonator shows attenuation characteristics -40 dB for transmitter and -50 dB for receiver by consisting of two sets of 4-stage cavity resonator within f$\_$o/$\pm$10 MHz bandwidth which was requirement of DSRC. Employing the measurement results, design procedure to characterize the transmission and reflection properties are presented.

  • PDF

Design and Fabrication of a Dual Linear Polarization Sinuous Antenna with Improved Cross Polarization Isolation (교차편파 격리도를 개선한 이중선형 편파 시뉴어스 안테나의 설계 및 제작)

  • Kim, Jee-heung;Ryu, Hong-kyun;Chae, Myung-ho;Kim, Jung-hoon;Park, Beom-jun;Park, Young-ju
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.123-132
    • /
    • 2018
  • In this paper, we design and fabricate a dual liner polarization sinuous antenna with improved cross polarization isolation (XPI). The proposed antenna is composed of four arm radiators for generating dual linear polarization and excited by wideband microstrip balun with Klopfenstein taper structure. Also, two-step cylindrical cavity structure is applied to reduce back radiation. Honeycomb-typed absorbing material is inserted into the cavity to reduce performance degradation by reflected wave. To enhance cross polarization isolation in low frequency band, resistors are adapted between outer arm and the rim of cavity. We confirmed that the fabricated antenna can be applied for polarization measurement due to improved XPI in the low band.

Microwave Breakdown and High-Power Handling Capability of Circular Waveguide Cavity Filter (원통형 도파관 캐비티 필터의 마이크로파 방전과 고전력 취급 능력)

  • Lee, Sun-Ik;Kim, Joong-Pyo;Lim, Won-Gyu;Kim, Sang-Goo;Jang, Jin-Baek
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.3
    • /
    • pp.80-85
    • /
    • 2017
  • In this paper, a mircrowave breakdown of X-band circular waveguide cavity filter, which occurred during ground test, was introduced, and electro-magnetic field simulation results to identify a root cause, and the analysis of possibility of its occurrence on orbit operation were presented. Filter modeling for simulation was conducted with a commercial tool (FEST3D), and electric fields inside the filter were monitored at the input of 1 W continuous wave. In our observation, strong electric field intensities were monitored on the tuning screws especially at the input of band-edge frequencies. The threshold power levels for the breakdown were also estimated and compared with the input power levels actually injected to the filter. From this estimation, we could figure out that the power exceeding the breakdown threshold was injected to the filter so that strong electric fields were generated and temperature increased high, and this became a root cause of the electrical short. Our further analysis showed that this kind of microwave breakdown is not likely to occur on orbit operation, and multipactor is expected not to occur at the input of band-edge frequencies. As a measure to prevent the microwave breakdown, we suggested to avoid the injection of band-edge frequencies and inject lower power levels to the filter.

Applied Sound Frequency Monitoring in the Transformer Oil Using Fiber Optic Sagnac Interferometer (사냑형 간섭계 광섬유 센서를 이용한 변압기유 내에서의 외부 음향 주파수 모니터링)

  • Lee, Jongkil;Lee, Seunghong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.288-294
    • /
    • 2015
  • The fiber optic Sagnac interferometer is well established as a sensor for detection of physical perturbations such as acoustic and vibration. In this paper acoustic signals generated in the cylindrical cavity submerged in transformer oil were measured by the fiber optic sensor array in one Sagnac loop. Two different external sound frequencies, $f_1$ and $f_2$, were applied to the sensor array simultaneously by using piezoelectric with frequency range from 5 kHz to 90 kHz. Based on the experimental results, fiber optic sensor detected harmonic series of applied sound frequency such as $f_1$, $f_2$, $2f_1$, $2f_2$, ${\mid}f_1-f_2{\mid}$, ${\mid}f_1+f_2{\mid}$. Suggested fiber optic sensor array can be applied to monitor physical quantities such as internal sound pressure and vibration due to partial discharge in the real electric transformer system.