• Title/Summary/Keyword: 원추형금형을 이용한 압출

Search Result 4, Processing Time 0.022 seconds

원추형 금형을 이용한 비 등온 축대칭 열간 압출의 해석

  • 강연식;박치용;조종래;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.17-20
    • /
    • 1991
  • 금형의 제작이 쉽고 작은 힘으로 소재 가공을 할 수 있는 공정중의 하나가 원추형금형을 이용한 압출이다. 원추형 금형 압출은 현장에서 많이 사용되고 있으며 이에 대한 해석도 많이 이뤄졌었다. 그러나 정상상태의 해석이 대부분이었고 비정상상태 열간해석은 거의 이뤄지지않았다.(중략)

  • PDF

Non-steady state finite element analysis of nonisothermal hot container extrusion through conical dies (원추형금형을 통한 비 등온 열간 콘테이너 압출의 비정상상태 유한요소해석)

  • Kang, Yean-Sick;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.30-39
    • /
    • 1993
  • The study is concerned with the thermo-viscoplastic finite element analysis of nonisothermal hot container extrusion through conical dies. The problem is treated as a non-steady state incorporating the nonisothermal heat transfer analysis. The analysis of temperature distribution includes heat transfer though the boundary surface including conduction, convection and radiation. The analysis of heat transfer is decoupled with the analysis of deformation and the material interaction is considered through iteration procedure. The effect of important process parameters including die angle and extrusion ratio in the process is investigated. Due to the geometric feature for the container extrusion through conical dies, automatic remeshing is mandatory. Automatic remeshing is achieved by introducing the modular remeshing technique.

  • PDF

Rigid-Plastic Finite Element Analysis of Axisymmetric Forward Extrusion (강소성 유한요소법 을 이용한 축대칭 전방 압출 해석)

  • 양동열;오병수;이중홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.452-462
    • /
    • 1985
  • The axisymmetric forward extrusion is analyzed by using the rigid-plastic finite element formulation. The distribution of stresses and strains as well as the deformation pattern in solid extrusion is very important for the improvement of product quality. The initial velocity field is determined by assuming the material as a Newtonian fluid through an arbitrarily shaped axisymmetric die. The workhardening effect and the friction of the die-material interface are considered in the formulation. Some reduction of area and die shapes(conical and biquadratic-curved) are chosen for computation. Experiments are carried out for steel alloy(SCM4) specimens using conical and curved dies. It is found that experimental observation is in good agreement with FEM results. The strain distribution is curved(biquadratic) dies is shown to be more uniform than in conical dies at the same reduction of area.

Analysis of axisymmetric extrusion through curved dies by using the method of weighted residuals (가중잔류항법을 이용한 곡면금형의 축대칭 전방압출해석)

  • 조종래;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.509-518
    • /
    • 1987
  • The paper is concerned with the analysis of axisymmetric forward extrusion by using the method of weighted residuals. In the method of weighted residuals, the flow function and the stress functions are assumed so as to cover the global control volume. The derived stress and strain components are used to formulate a constitutive equation in the error form, so that the error is minimized to determine the stress and strain components. The method of least squares is then chosen for the minimization of errors. The distribution of stresses and strains and the forming load are determined for the workhardening material considering the frictional effect at the die surface. The computed results are very similar to those obtained by the finite element method. The method is simpler in application and requires less computational time than the finite element method. Experiments are carried out for aluminum and steel specimens using curved dies. It is found that the experimental observation is mostly in agreement with the computed results by the method of weighted residuals.