• Title/Summary/Keyword: 원자력현미경팁

Search Result 4, Processing Time 0.023 seconds

A Study on Determination of the Area Function of Nano Indenter Tip with AFM (AFM을 이용한 나노 인덴터 팁의 면적함수 결정에 관한 연구)

  • 박성조;이현우;한승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.145-152
    • /
    • 2004
  • Depth-sensing indentation is wifely used for evaluation of mechanical properties of thin films. It is generally accepted that the most significant source of uncertainty in nanoindentation measurement is the geometry of the indenter tip. Therefore the successful application of the technique requires accurate calibration of the indenter tip geometry. The direct measurement of geometry of a Berkovich indenter was determined using a atomic force microscope. The indentation geometrical calibration of contact area was performed by analyzing the indenter tip profile. The equations of area functions were proposed for nanoscale thin films..

Formation of Switching Zones in an AFM Tip/Ferroelectric Thin Film/BE System (AFM팁/강유전박막/전극 시스템에서의 스위칭 영역의 형성)

  • Kim, Sang-Joo;Shin, Joon-Ho;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.849-856
    • /
    • 2003
  • A three-dimensional constitutive model for polarization switching in ferroelectric materials is used to predict the formation of switching zones in an atomic force microscopy(AFM) tip/ferroelectric thin film/bottom electrode system via finite element simulation. Initially the ferrolectric film is poled upward and the bottom electrode is grounded. A strong dc field is imposed on a fixed point of the top surface of the film through the AFM tip. A small switching zone with downward polarization is nucleated and grows with time. It is found that initially the shape of the switched zone is that of a bulgy dagger, but later turn to the shape of a reversed cup with the lower part wider than the upper part. It can also be concluded that the size of switching zones increases with the period of applied electric potential. The present results are qualitatively consistent with experimental observations.

Nanoscale Fabrication in Aqueous Solution using Tribo-Nanolithography (Tribo-Nanolithography를 이용한 액중 나노가공기술 개발)

  • Park Jeong Woo;Lee Deug Woo;Kawasegi Noritaka;Morita Noboru
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.194-201
    • /
    • 2005
  • Nanoscale fabrication of silicon substrate in an aqueous solution based on the use of atomic force microscopy was demonstrated. A specially designed cantilever with diamond tip, allowing the formation of damaged layer on silicon substrate easily by a simple scratching process (Tribo-Nanolithography, TNL), has been applied instead of conventional silicon cantilever for scanning. A slant nanostructure can be fabricated by a process in which a thin damaged layer rapidly forms in the substrate at the diamond tip-sample junction along scanning path of the tip and simultaneously the area uncovered with the damaged layer is being etched. This study demonstrates how the TNL parameters can affect the formation of damaged layer and the shape of 3-D structure, hence introducing a new process of AFM-based nanolithography in aqueous solution.