• 제목/요약/키워드: 원위치 화학적 산화법

검색결과 5건 처리시간 0.019초

과산화수소를 이용한 현장원위치 화학적 산화법과 공기분사법(Air-sparging)을 연계한 디젤 오염 토양/지하수 동시 정화 실내 실험 연구 (Study on the Combination of In-situ Chemical Oxidation Method by using Hydrogen Peroxide with the Air-sparging Method for Diesel Contaminated Soil and Groundwater)

  • 김남호;김인수;최애정;이민희
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제11권6호
    • /
    • pp.8-17
    • /
    • 2006
  • 현장비원위치(Ex-situ) 공법 적용이 불가능한 부지에서, 디젤로 오염된 오염 토양과 지하수를 동시에 복원하기 위하여 과산화수소를 이용한 현장원위치 화학적 산화법(chemical oxidation)과 공기분사법(air-sparging)을 연계한 복합 복원 공정의 정화 효율 규명을 위한 실내 실험을 실시하였다. TPH 농도가 2,401 mg/kg(A 토양)과 9,551 mg/kg(B 토양)인 두 종류의 현장 오염 토양을 대상으로 과산화수소용액을 이용한 화학적 산화법의 디젤 제거 효율 규명을 위한 배치(회분식) 실험 결과, 과산화수소 50% 용액에 의해 토양 초기 TPH 농도의 18%와 15%까지 감소하였다. 과산화수소 용액 20%를 이용한 칼럼 세정 실험 결과, 세정에 의해서 A 토양과 B 토양의 경우 각각 초기 TPH 양의 78%와 72%가 제거되었다. 칼럼 실험에서 과산화수소의 산화반응에 의해 완전 분해되어 무기가스상(주로 $CO_2$$H_2O$)으로 제거된 양까지 고려한다면, 과산화수소용액이 오염 토양과 접촉하면서 충분한 산화과정을 거쳐 대부분의 유류가 토양으로부터 제거되었음을 알 수 있었다. 공기분사법을 이용한 디젤 오염 지하수 정화 실험의 경우, TPH 농도가 820 mg/L인 고농도의 인공 지하수 경우에도 공기분사 72시간 이내에 폐수배출허용기준인 5 mg/L 보다 낮아져, 디젤 제거 효율이 매우 높은 것으로 나타났다. 다만, 오염 토양 내 다량의 디젤 자유상이 존재하는 경우 토양으로부터 지하수로의 지속적인 자유상 디젤의 질량 이동에 의하여, 공기분사법의 지하수 정화 효율은 매우 낮았다. 마지막으로, 과산화수소를 이용한 현장원위치 화학적 산화법과 공기분사법을 연계한 복합 공정의 디젤 정화 효율을 규명하는 박스 실험을 실시하였다. 토양 내 자유상 디젤을 먼저 제거하기 위해 과산화수소 용액을 이용한 토양세정법을 실시한 후, 토양 내 TPH가 제거 되는 정도에 따라 후차적으로 공기분사법을 적용함으로써 토양 및 지하수로부터 디젤을 효과적으로 제거할 수 있었다. 20% 과산화수소 용액의 23 L 세정과 2,160 L의 공기분사에 의해 토양의 TPH 농도는 9,551 mg/kg에서 390 mg/kg으로 낮아졌으며, 오염 지하수의 TPH 농도도 5 mg/L 이하로 낮출 수 있었다. 본 실험들에서 얻어진 결과를 바탕으로 실제 현장에서 대단위 공정을 운영하는데 필요한 복원 공정의 최적 조건들을 도출해 낼 수 있으리라 판단되며, 유류로 오염된 토양 뿐 아니라 오염 지하수까지 동시에 정화할 수 있는 복합 공정 개발을 위한 중요한 기술 자료로 이용될 수 있을 것으로 판단된다.

Persulfate에 의한 RDX 산화시 반응조건과 NOM의 영향 (The Effects of Reaction Conditions and NOM on Persulfate Oxidation of RDX)

  • 무대박;배범한
    • 대한환경공학회지
    • /
    • 제33권10호
    • /
    • pp.723-730
    • /
    • 2011
  • 본 연구는 토양이나 지하수 원위치 화학적 산화법(In-Situ Chemical Oxidation, ISCO)에서 사용할 수 있는 산화제 Persulfate를 상온에서 활용할 수 있도록 RDX를 처리대상물질로 연구하였다. Persulfate로 RDX를 처리한 결과, 반응은 유사1차반응으로 나타났으며 온도가 증가함에 따라 분해속도도 증가하였고, 이 때 활성화에너지(Activation energy)는 $1.14{\times}10^2kJ/mol$으로 산정되었다. Persulfate에 의한 RDX의 분해반응속도는 pH에 비례하여 증가하였으며, pH값이 4, 6, 8일 때 반응속도의 변화가 크지 않았다. 그러나 pH 10에서는 13배 이상 증가하였는데, persulfate에 의한 산화가 아니라 alkaline hydrolysis로 나타났다. Persulfate에 의한 RDX의 분해반응속도는 persulfate/RDX의 몰 비율에 따라 선형적으로 증가하였으며, $70^{\circ}C$에서 측정한 비례상수는 $4{\times}10^{-4}$ ($min^{-1}$/몰 비율)이었다. 용액 내 천연유기물(NOM) 농도가 증가함에 따라 persulfate에 의한 RDX 분해속도 선형 감소하였으며 $70^{\circ}C$, persulfate/RDX 몰비 10/1에서 측정한 비례상수는 $1.21{\times}10^{-4}$ ($min^{-1}{\cdot}L/mg-NOM$)이었다. 반응속도의 감소는 NOM 첨가량에 선형적으로 비례하였다. NOM 20 mg/L을 첨가한 반응의 Ea값은, 무첨가 반응에서 산정된 Ea값과 3.3% 오차에 불과하였는데, 이는 NOM의 첨가가 본래의 산화반응을 변화시키지는 않음을 의미한다.

토착미생물의 생지화학적 활동에 의한 지하수의 산화/환원전위 변화 특성 (Changes of the Oxidation/Reduction Potential of Groundwater by the Biogeochemical Activity of Indigenous Bacteria)

  • 이승엽;노열;정종태
    • 자원환경지질
    • /
    • 제47권1호
    • /
    • pp.61-69
    • /
    • 2014
  • 중금속류나 방사성 물질로 오염된 지하수를 원위치에서 처리(정화 혹은 고정화)하고자 할 때, 반드시 고려해야 할 지화학적 요소 중의 하나는 지하수의 산화/환원전위 값이다. 우리는 생지화학적 작용에 의한 현장 지하수의 산화/환원전위 변화 특성을 알아보기 위해 실험실 조건에서 한국원자력연구원의 심부지하수를 대상으로 전자공여체(젖산), 전자수용체(황산염) 및 토착미생물을 주입하여 시간별로 산화/환원전위 변화를 관찰하였다. 질소가스-충전 글로브박스에 있는 순수 지하수는 시간이 경과함에 따라 미약한 Eh 상승(약산화)이 있었다. 하지만, 젖산, 황산염 혹은 미생물이 주입된 지하수 대부분의 Eh는 감소(환원)하는 특성을 보여주었다. 특히, 국내 토착 황산염환원미생물인 '바쿨라텀'이 주입되었을 때, 지하수의 Eh가 -500 mV 근처까지 감소하여 강환원성 지하수로 바뀌었다. 이처럼 일반 금속환원박테리아에 비해 황산염환원박테리아의 지하수 환원화 능력이 매우 우수함에도 불구하고, 용존 황산철을 필요로 하였고 최종적으로 황화광물(예; 맥키나와이트)이 생성되면서 추후 반응에 관한 예측을 어렵게 하였다. 결과적으로, 미생물 외에도 미량의 영양물질 주입 여하에 따라 지하수의 산화/환원전위가 크게 달라졌으며, 이는 산화/환원전위의 영향을 받는 용존 오염 물질의 산화수, 용해도 및 수착 등의 특성들이 생물자극법에 의해 바뀌거나 조절될 수 있음을 의미한다.

CdTe 나노입자의 자기조립과정을 통한 나노리본 합성 (Conversion of CdTe Nanoparticles into Nanoribbons via Self-Assembly)

  • 오수연;강완규;강정원;김기섭;이흔
    • Korean Chemical Engineering Research
    • /
    • 제50권6호
    • /
    • pp.1082-1085
    • /
    • 2012
  • CdTe 나노입자로부터 형성된 나노리본은 독특한 광학적 특성을 나타낸다. 용액 내 CdTe의 $Te^{2-}$ 이온의 산화는 나노입자에 불규칙적인 결함을 유발하며 이때 여러 층의 나노결정으로 구성된 나노리본을 형성하게 된다. 본 연구에서는 자기조립 된 CdTe 나노입자가 나노리본을 형성하는 과정에서 빛을 조사하였다. 빛은 용액 내 CdTe 나노입자의 표면에 위치한 $Te^{2-}$의 산화를 촉진시키는 촉매 역할을 수행한다. 합성된 3차원 나노리본의 형태와 특성을 투과전자현미경(TEM)으로 조사하였다. TEM 결과 안정제가 완전히 제거된 부분에서 부분적으로 접힌 꼬인 형태의 다결정 나노리본을 관찰할 수 있었다. Photoluminescence (PL) 측정 결과 550 nm에서 544 nm로 나노입자가 나노리본으로 형성될 때 Blue shift 되었음을 확인하였다. 본 연구에서 제안된 새로운 합성법은 나노물질을 합성하는 새로운 대안을 제시한다.

노화에 따른 Zr-Ni계 지연관의 열 특성 및 화학적 구조 변화에 관한 연구 (A Study on change in thermal properties and chemical structure of Zr-Ni delay system by aging)

  • 박병찬;장일호;김선태;황택성;이승호
    • 분석과학
    • /
    • 제22권4호
    • /
    • pp.285-292
    • /
    • 2009
  • 장기 저장된 탄약은 화공품의 노화에 따른 절심현상(연소 중단)으로 인해 불발 등의 악작용이 발생하게 된다. 탄약에 주로 사용되는 화공품은 초기 에너지를 부여하는 뇌관 화약과 뇌관 화약의 에너지를 받아 지연제를 점화시켜주는 점화제, 일정 시간 동안 연소를 지연시켜주는 지연제 등을 사용한다. 이러한 형태의 탄약에는 뇌관화약, 점화제, 지연제의 순으로 충전되는데 충전된 순서대로 에너지가 전달되어 기능을 발휘하게 된다. 탄약의 절심 현상은 점화제의 연소중단, 점화제로부터 지연제로의 불충분한 에너지 전달, 지연제의 연소 중단 등에 의해 발생하는데, 이러한 현상이 나타나는 요인으로는 각 구성 성분의 낮은 순도,부적절한 혼합비, 입자성 성분의 입자 크기 및 분포, 바인더의 종류, 각 구성 성분의 혼합방법, 장기저장시 흡입된 수분에 의한 구성성분의 가수분해 및 고온에 의한 구성 성분의 화학적 변화 등이 의심된다. 본 연구의 목적은 Zr-Ni계 지연관 결합체를 장기 보관했을 때 점화제 및 지연제에서 나타나는 연소중단현상의 원인을 규명하는 것이다. 이를 위해 본 연구에서는 현장에서 일어나는 절심현상과 일치하는 시험법을 개발하였고, 장-흐름 분획법(field-flow fractionation, FFF)을 이용하여 입자성 성분의 입자 크기와 분포를 조사하였으며, 장기보관에 의한 점화제와 지연제의 화학적인 변화 메커니즘을 조사하기 위하여 열분석(differential scanning calorimetry) 및 XRD, XPS (X-ray diffractometry, X-ray photoelectron Spectroscopy)분석을 수행하였다. XPS 와 XRD data 에 의하면, 점화제의 경우 산소의 1s 결합에너지 위치에서 M-O,M-OH 피크들이 관찰되었다. 이는 산화에 의한 새로운 생성물이 생성되었음을 의미한다. 즉 점화제의 산화에 의해 방출 열량이 감소하여 절심(연소 중단) 현상이 야기된다는 사실을 확인할 수 있었다.