• Title/Summary/Keyword: 원심 압축기

Search Result 192, Processing Time 0.031 seconds

Dynamic Model of Centrifugal Compressor for Prediction of Surge Evolution and Performance Variations (서지 발현과 성능 예측을 위한 원심압축기 동적 거동 모델)

  • Jung, Mooncheong;Han, Jaeyoung;Yu, Sangseok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.5
    • /
    • pp.297-304
    • /
    • 2016
  • When a control algorithm is developed to protect automotive compressor surges, the simulation model typically selects an empirically determined look-up table. However, it is difficult for a control oriented empirical model to show surge characteristics of the super charger. In this study, a dynamic supercharger model is developed to predict the performance of a centrifugal compressor under dynamic load follow-up. The model is developed using Simulink$^{(R)}$ environment, and is composed of a compressor, throttle body, valves, and chamber. Greitzer's compressor model is used, and the geometric parameters are achieved by the actual supercharger. The simulation model is validated with experimental data. It is shown that compressor surge is effectively predicted by this dynamic compressor model under various operating conditions.

Preliminary Aerodynamic Design of 13:1 Pressure Ratio Axial-Centrifugal Compressor (13:1의 압축비를 갖는 축류-원심형 압축기의 기본 공력설계)

  • 김원철
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.2
    • /
    • pp.83-94
    • /
    • 2003
  • Preliminary aerodynamic design of a compressor is carried out to meet the design requirements which are pressure ratio of 13, air mass flow rate of 4 ㎏/s and rotational speed of 45,000 rpm. The compressor type is chosen as an axial-centrifugal compressor from the design requirements which is suitable for a medium power class turboprop or turboshaft engine. Its overall isentropic efficiency is estimated to be 0.796 and its surge margin to be 20% exceeding the design requirement. This paper summarizes the aerodynamic design details including the design procedures and the results of the axial -centrifugal compressor.

Experimental Study on Stall Inception in a Centrifugal Compressor (원심압축기 스톨 발단에 관한 실험적 연구)

  • Kang, Jeong-Seek;Kang, Shin-Hyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.200-210
    • /
    • 2000
  • 본 연구에서는 고속의 원심압축기에서 스톨 발단에 관한 연구를 수행하였다. 스톨을 일으키는 요인과, 스톨이 발생하기 전에 이를 미리 경고할 수 있는 방법을 주된 연구 주제로 삼았다. 원주방향으로 균일하게 분포된 8개의 고속응답 압력변환기를 사용하여 순간압력을 측정하였으며, 이 신호를 공간 푸리에 변환(space Fourier transform)을 사용하여 스톨의 발단을 알리는 신호를 측정하였고, 회전하는 파의 에너지(Traveling Wave Energy) 방법을 사용하여 스톨을 미리 경고하는 방법에 대하여 연구하였다. 회전하는 파의 에너지 방법은 스톨을 경고하는 데 좋은 성능을 보였으며, 저속에서는 약 임펠러 100회전, 중간속도에서는 약 200회전, 그리고 고속에서는 약 임펠러 1000회전의 경고시간을 보였다. 그리고 스톨 발단 근처에서 공간 푸리에 계수의 위상이 임펠러 주파수의 속도로 선형적인 증가를 보이는 구간이 나타났으며, 또한 임펠러 주파수의 스펙트럼이 스톨로 접근하면서 증가하는 것으로부터, 임펠러 주파수가 스톨을 일으키는 중요한 요인으로 작용함을 알 수 있었다. 또한 임펠러의 회전속도에 관계없이 스톨로 접근하면서 임펠러 주파수의 스펙트럼이 증가하므로, 이 값이 스톨을 경고하는 방법으로 사용될 수 있음을 보였으며, 약 임펠러 2n회전의 경고시간을 얻을 수 있었고, 임펠러의 속도가 빠를수록 긴 경고시간을 얻었다. 이 방법의 개발로 하나의 센서의 측정만으로도 효과적으로 스톨을 경고할 수 있는 기반을 마련하였다.

  • PDF

Optimization of a Centrifugal Compressor Impeller(I): Shape Parameters and Design Variables (원심압축기 최적화를 위한 연구(I): 형상변수 및 설계변수에 관한 연구)

  • Choi, Hyoung-Jun;Park, Young-Ha;Ahn, Kook-Young;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.424-432
    • /
    • 2011
  • Shape parameters and design variables for a centrifugal compressor impeller were investigated for optimizing a centrifugal compressor. In order to compare the performance of an optimized impeller with the performance of the original impeller, an already tested impeller was chosen and design variables for optimization were selected. The meridional shapes at the shroud and at the hub were re-designed using the Bezier curve. The camber-lines of the impeller blade at the hub and at the tip were also expressed by the Bezier curve. The shape curves for impeller could be expressed using 6-8 control points. Among them, eight control points which have strong effect to the shape can be selected as design variables for optimization. Therefore, any impeller which is expressed by data points for its shape can be optimized using few design variables.

A Study on the Influence of S Shaped Annular Duct on the Centrifugal Compressor Performance (S자형 환형덕트가 원심압축기 성능에 미치는 영향에 관한 연구)

  • 정주현;전승배;김승우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.2
    • /
    • pp.64-73
    • /
    • 1998
  • In twin spool aero-engine, there may be a S shaped annular duct between high pressure and low pressure spools. The flow passing this S shaped duct experiences the flow acceleration and deceleration due to the convex and concave surface of the duct as well as the increase of blockage according to the boundary layer growth along the surfaces. So, the high pressure compressor which is located behind the S shaped duct is influenced by the non-uniform flow field generated by the geometry of inlet duct. To study the influence of the S shaped duct on the centrifugal stage, performance tests were implemented for the compressor with straight cylindrical inlet duct and with S shaped inlet duct, respectively. The test results showed that the performance, such as pressure ratio and efficiency, of the compressor with S shaped duct was worse than that of the compressor with cylindrical duct. And the compressor with S shaped duct had reduced maximum flow rate around design speed. To investigate the cause of performance degradation, flow anlaysis was performed for the impeller in front of which is located S shaped annular duct. The result of CFD showed the strong acceleration of the flow in the axial direction around the inducer tip region which caused the increase of relative mach number and the decrease of incidence angle of the flow.

  • PDF

Experimental study on impeller discharge flow of a centrifugal compressor (원심 압축기 임펠러 출구 유동에 관한 실험적 연구)

  • 신유환;김광호;손병진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.483-494
    • /
    • 1998
  • This study describes the characteristics on impeller discharge flow of a centrifugal compressor with vaneless diffuser. Distorted flow at impeller exit was investigated by measuring of unsteady velocity fluctuation using hot-wire anemometer. As a result, a wake region appears near shroud side and moves to suction side and also to hub side as flow rate decreases. Jet, wake, and their boundary region which can be defined in jet-wake flow model are clearly observed at a high flow rate for the flow coefficient of 0.64, however, as flow rate decreases to the flow coefficient of 0.19, the classification of their regions disappears. Turbulence intensity also increases as flow rate decreases. Measurement error from uncertainty analysis is estimated about 4% at the flow coefficient of 0.19

  • PDF

Experimental Study on the Effect of Inlet Guide Vane of a Centrifugal Compressor (입구 안내익 영향으로 인한 원심 압축기 성능특성 시험연구)

  • Cha, Bong-Jun;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.3 s.16
    • /
    • pp.46-53
    • /
    • 2002
  • This paper reports an experimental investigation on a centrifugal compressor with the adjustable inlet guide vane. The compression system is composed of a radial impeller, a vaneless diffuser, and an IGV. The results have shown that surge line on the performance map is affected by the amount of prewhirl and the prewhirl has an effect on transient region between rotating stall and surge. The surge lines have been shifted toward the lower flow region with the increased positive prewhirl and the higher flow region with the increased negative prewhirl. During the unsteady performance test, it was also found that the transient region was reduced with the increased negative prewhirl, and weak signals of rotating stall were detected just before surge as the positive prewhirl was increased.

A Numerical Study on Aerodynamic Performance by the Blade Mach Number of the Centrifugal Compressor (원심 압축기의 임펠러 마하수에 따른 공력성능 특성에 관한 수치해석적 연구)

  • Heo, Won-Seok;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.4
    • /
    • pp.56-61
    • /
    • 2015
  • It is important requirement to properly evaluate the aerodynamic performance and characteristics during preliminary design of a centrifugal compressor. In this study the centrifugal compressor was calculated for variations of mass flow and blade Mach number by means of single passage steady state. A lot of quantitative performance values were obtained and through the obtained values the aerodynamic performance characteristics of designed impeller and vaned diffuser were investigated. The results were classified by blade Mach number to analyze characteristics and the aerodynamic performance was examined at choke of impeller, diffuser and separation of diffuser.

Experimental Study on the Effect of Inlet Guide Vane of Instabilities of a Centrifugal Compressor (입구 안내익 영향으로 인한 원심 압축기 불안정성 연구)

  • Lim, Byeung-Jun;Cha, Bong-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.23-31
    • /
    • 2004
  • An experimental study on the performance and instability development characteristics of a centrifugal compressor equipped with an adjustable inlet guide vane has been performed with varying guide vane angles. The test was conducted at the design speed of 20,800 rpm for 6 guide vane angles : $-30^{\circ},\;-20^{\circ},\;10^{\circ},\;0^{\circ},\;10^{\circ},\;20^{\circ},\;30^{\circ}$. Unsteady pressures were measured using high-frequency pressure transducers at the inducer to investigate the instability phenomena such as rotating stall and surge inside the compressor. From the unsteady measurements, it is found that the transient process from rotating stall to surge was mainly affected by inlet guide vane angles. The results of the present study can be applied to the instability control of the centrifugal compressors using a adjustable inlet guide vane.

Performance prediction and loss analysis of centrifugal compressors (원심 압축기의 성능 예측 및 손실 해석)

  • O, Hyeong-U;Yun, Ui-Su;Jeong, Myeong-Gyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.6
    • /
    • pp.804-812
    • /
    • 1997
  • The present study has tested most of loss models previously published in the open literature and found an optimum set of empirical loss models for a reliable performance prediction of centrifugal compressors. In order to improve the prediction of efficiency curves, this paper recommends a modified parasitic loss model. Predicted performance curves by the proposed optimum set agree fairly well with experimental data for a variety of centrifugal compressors. The prediction method developed through this study can serve as a tool for preliminary design and assist the understanding of the operational characteristics of general purpose centrifugal compressors.