• 제목/요약/키워드: 원심펌프

검색결과 197건 처리시간 0.037초

초고압 용적형 펌프의 체절운전시스템 개발에 관한 연구 (A Study on Development of Shutoff Operating System of Ultra-High Pressure Positive Displacement Pump)

  • 민세홍;김호철;성기찬
    • 한국화재소방학회논문지
    • /
    • 제30권2호
    • /
    • pp.106-113
    • /
    • 2016
  • 초고압 용적형 펌프는 로터의 회전에 의한 주기적인 용적의 변화를 이용하는 펌프로 고압, 고유량을 동시에 만족하며 로터의 저속 및 고속 회전에 따라 변화 없이 일정하게 상대적으로 높은 펌프 효율을 유지할 수 있는 장점을 가진다. 많이 사용되고 있는 원심펌프와는 달리 별도의 진공펌프가 없이도 자흡 성능을 가지고 있으며, 비교적 단순한 구조로 인하여 경량화, 소형화가 가능한 특성을 자기고 있다. 유체를 높은 압력으로 이송할 수 있으며, 압력의 변동에 따라 유량의 변동이 적은 정량 토출이 가능하다. 이러한 용적형 펌프를 사용하는 이유는 흡입된 유체가 유량의 변화 없이 토출되는 장점이 있기 때문이다. 본 연구에서는 유량의 변화가 없다는 장점이 있는 용적형 펌프의 체절시스템을 개발하여 펌프의 고압 운전시의 안전성을 확보하고자 하였다. 체절시스템은 컨트롤러 프로그램, 전자클러치, 릴리프밸브의 3가지로 이루어져, 한 가지 시스템이 작동하지 않아도 다른 시스템이 작동하는 시스템으로 이루어져 있다. 컨트롤러 프로그램과 전자 클러치의 작동을 확인하기 위한 과속도 시험과 릴리프 밸브의 유체유동해석, venting 실험을 통해 현재 개발한 초고압 용적형 펌프의 체절시스템이 작동됨을 확인하였다.

CFX 코드에 의한 산업용 원심펌프 성능해석에 관한 연구 (A Study on the Performance Analysis of an Industrial Centrifugal Pump Using CFX Code)

  • 김명석;김범석;김진구;박권하;이영호
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.174-175
    • /
    • 2005
  • The purpose of this study is focused on the analysis of 3D complex flow and performance characteristics of a centrifugal pump with volute casing. The numerical analysis was performed by commercial code CFX-10 according to the variation of flow rate, which is changing from 5.847$m^3$/min to 6.865$m^3$/min. The rated rotational speed of close type impeller is 1750rpm. Turbulence model, k-${\omega}$ SST was selected to guaranty more accurate prediction of flow separation. The ICEM-CFD 10, reliable grid generation software was also adapted to secure high quality grid generation necessary for the reliable numerical simulation. The experimental results such as static head, brake horse power and efficiency of the centrifugal pump were compared with the numerical analysis results. The simulated results are good agreement with the experimental results less 5$%$ error.

  • PDF

전달함수와 진동응답 측정에 의한 원심펌프에서의 유체력 특성에 관한 연구 (A Study on the Hydraulic Excitation Forces Using Transfer Function and Operational Measured Data for the Centrifugal Pump)

  • 최복록;박진무;김광은
    • 대한기계학회논문집A
    • /
    • 제24권8호
    • /
    • pp.1931-1939
    • /
    • 2000
  • Operating excitation forces of the linear vibratory system are normally determined by direct measurement techniques using load cells, strain gauges, etc. But, hydraulic forces of the rotating turbomachinery such as centrifugal pumps are exerted on an impeller due to asymmety of the flow by the interaction between pump impeller and volute. So, investigations of wide range of hydraulic designs and geometric deviations are difficult by direct method. This paper presents a hybrid approach for fourier transformed operational excitation forces, which uses pseudo-inverse matrix of the transfer matrix for the system and the measured vibrational data with standard installed pump. The determination of the transfer function matrix is based on a linear rotor/stationary system and steady state harmonic response in finite element analysis. And, vibrational data is collected in both vertical and horizontal directions at inboard and outboard bearing housings. The results of the process may be enhanced by making acceleration measurements at many more locations than there are forces to be determined.

원심펌프의 성능개선과 캐비테이션 억제에 관한 연구 (Improvement of Pump Performance and Suppression of Cavitation in a Centrifugal Pump)

  • 최영도;쿠로카와준이치
    • 한국유체기계학회 논문집
    • /
    • 제11권1호
    • /
    • pp.18-25
    • /
    • 2008
  • Recent trends of a centrifugal pump are high speed in rotation and high pressure in head with high efficiency to meet the demands of industries. However, the newly developed pumps make trouble of pressure pulsation in the pumping system by performance instability of the pump. Moreover, cavitation, which is a main obstacle of high rotational speed in the pump, occurring in an impeller gives serious damages to the impeller and casing wall. The purpose of present study is not only to develop a simple method to improve pump performance but also to suppress the occurrence of cavitation in the centrifugal pump by use of J-Groove. J-Groove is a shallow groove installed on the casing wall in the meridional direction. The application of J-Groove to a centrifugal pump with a new type impeller of "semi-closed impeller" has proved its effectiveness as a useful countermeasure of the unstable pump performance and cavitation. The results show that the combination of semi-closed impeller and J-Groove can be applied successfully and improves both the pump performance and suction performance.

캐비티 베인이 있는 고속 원심펌프의 축추력 제어 (Axial Thrust Control of High-speed Centrifugal Pump with Cavity Vanes)

  • 김대진;최창호;노준구;김진한
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.46-50
    • /
    • 2012
  • A high-speed centrifugal pump requires more attention to the control of its axial thrust due to the high discharge pressure than a conventional industrial pump. Vanes employed toward the rear cavity of the impeller can be an effective device to control the axial thrust of the pump. The vanes disturb circumferential flow of the cavity and it can modify the axial force acting on the impeller. In this paper, three types of vanes are installed in the high-speed centrifugal pump for liquid rocket engines and the thrust of the pump is measured with an additional thrust measurement unit. According to the results, shapes of cavity vanes have effects on the axial thrust of the pump. As the height of vanes increases, the outlet pressure of the rear floating ring seal decreases which results in a decrease of the thrust. On the other hand, head of the pump is almost same regardless of cavity vanes. Also, the pressure drop of the bypass pipeline increases when vanes are removed.

극저비속도 원심펌프의 성능과 내부유동특성에 관한 연구 (A Study on the Performance and Internal Flow Characteristics of a Very Low Specific Speed Centrifugal Pump)

  • 쿠로카와준이치;이영호;최영도
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.784-794
    • /
    • 2005
  • In the very low specific speed range ($n_s=0.24$ < 0.25, non-dimensional), the efficiency of centrifugal pump designed by a conventional method is very low in common. Therefore, positive-displacement pumps have long been used widely. Recently, since the centrifugal pumps are becoming higher in rotational speed and smaller in size, there expects to develop a new centrifugal pump with a high performance to replace the positive-displacement pumps. The purpose of this study is to investigate the internal flow characteristics of a very low specific speed centrifugal pump and to examine the effect of internal flow pattern on pump performance. The results show that the theoretical head definition of semi-open impeller should be revised by the consideration of high slip factor in the semi-open impeller, and the leakage flow through the tip clearance results in a large effect on the impeller internal flow. Strong reverse flow at the outlet of semi-open impeller reduces the absolute tangential velocity considerably, and the decreased absolute tangential velocity increasese the slip factor with the reduction of theoretical head.

원심펌프의 시동 및 정지에 따른 수격현상 (Waterhammer Caused by Startup and Stoppage of a Centrifugal Pump)

  • 김경엽;김점배
    • 한국유체기계학회 논문집
    • /
    • 제7권1호
    • /
    • pp.51-57
    • /
    • 2004
  • The waterhammer has recently become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity As the pressure waves are propagating between the pumping station and the distributing reservoir, the pressure inside the pipe drops to the liquid vapor pressure with the pipeline profile, at which time a vapor cavity forms, and finally the column separation occurs. If the pressure in the pipe is less than the atmospheric pressure, the pipe can be collapsed and destroyed after the water columns separated by the vapor cavity rejoin. During the reverse flow, the pressure is so abnormally increased at the pumping station that the accident of flooding may happen due to the failure of system. In this paper, the field tests on the waterhammer by the startup, stoppage, and power failure of a centrifugal pump were carried out for Yongma transmission pumping station in Seoul. The experimental results were compared with that of the numerical calculations, in which results the procedure of controlled pump normal shut-down and the two-step closing mode of controlling the ball valve for pump emergency stop are proposed to reduce the pressure surge.

단단 밀폐형 원심펌프의 기액이상류 성능시험 설비 (Air-Water Two-Phase Flow Test Facility of a Single Stage Closed-type Centrifugal Pump)

  • 김성윤;이상일;김유택;김성동;이용선;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.49-53
    • /
    • 2004
  • LabVIEW is mostly preferred to use in experiment, measurement and control as one of the useful thing in America and Europe. So, We tried performance experiment of a single-stage closed-type centrifugal pump by using the LabVIEW. The pump rpm and the shaft torque are measured by rpm sensor and torque sensor The test pump's maximum rpm, head, kW are 1,750, 13m, and 1.5kW, respectively The casing is made up with transparency acrylic for confirmation the flow patterns. We installed experimental equipment for air water two phase flow. This paper tries to analyze the single-phase flow characteristics through this air water two phase flow experimental apparatus. The performance results of a single-stage closed-type centrifugal pump satisfied reappearance and coincide well with head and coefficients according to the change of rpm.

  • PDF

원심펌프 관로계에 대한 임펄스 응답법 적용 연구 (Impulse response method for a centrifugal pump in pipeline systems)

  • 허지성;김현준;송용석;김상현
    • 상하수도학회지
    • /
    • 제30권5호
    • /
    • pp.481-489
    • /
    • 2016
  • Method of characteristic(MOC) has been widely used as a transient analysis technique for pressurized pipeline systems. There are substantial studies using MOC for the water hammer triggered through instantaneous valve closures, pump stoppage and pump startup for pipelines systems equipped with a centrifugal pump. Considering restrictions of MOC associated with courant number condition for complicated pipeline systems, an impulse response method(IRM) was developed in the frequency domain. this study implements the impact of centrifugal pump using transfer function in frequency domain approach. Using pump performance curve and the affinity law, this study formulated transfer functions which relate complex pressure head at upstream of pump system to that of downstream location. Simulations of simple reservoir-pump-valve system using IRM with formulated transfer function were similar to those obtained through MOC.