• Title/Summary/Keyword: 원심모델링

Search Result 56, Processing Time 0.02 seconds

Centrifuge Modelling of Bridge Abutment Foundation on the Sloped Ground (경사지반에 위치한 교대기초의 원심모델링)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Hong, Young-Kil
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.209-214
    • /
    • 2007
  • This paper is the research result about centrifuge model experiments of investigating the behavior of bridge abutment on the sloped ground. Ground condition of the studied site was the bridge abutment with pile foundation adjacent to the slope. The pile foundations was supported on the soft rocks covered with the embankment. Evaluating the behavior of such a complicate ground and structure conditions was not easy so that the centrifuge modelling was performed to find the overall behavior of them. Layout of centrifuge model experiment was simplified to simulate easily the actual behavior of very complicate site condition. Construction process in field such as ground excavation for footing foundation, installation of piles, placement of footing and bridge abutment, backfilling and surcharge loading eas duplicated in the centrifuge model experiment. Consequently, the stability of the piled bridge abutment adjacent to the slope of embankment was evaluated throughout centrifuge modelling.

  • PDF

2D Numerical Simulation of a Dynamic Centrifuge Test for a Pile-Supported Structure (2차원 수치해석을 이용한 말뚝 지지구조물의 동적 원심모형실험 거동 모사)

  • Chanh, Pham Viet;Tran, Nghiem Xuan;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.8
    • /
    • pp.15-26
    • /
    • 2018
  • Recently, as the seismic performance based design methods have been introduced, dynamic numerical analyses need to be performed to evaluate the actual performance of structures under earthquakes. The verification of the numerical modeling is the most important for the performance based design. Therefore, 2-dimensional numerical analyses were performed to simulate the seismic behavior of a pile-supported structure, to provide the proper numerical modeling and to determine of input parameters. A dynamic centrifuge test of a pile group in dry loose sand was simulated to verify the applicability of the numerical model. The numerical modeling was carefully made to reflect the actual condition of the centrifuge test including dynamic soil properties, soil-pile interaction, boundary condition, the modeling of the group pile and structure and so on. The predicted behavior of the numerical analyses successfully simulated the acceleration variation in ground, the moment and displacement of the pile, and the displacement and acceleration of the structure. Therefore, the adopted numerical modeling and the input parameters can be used to evaluate the seismic performance of pile groups.

Behavior of Soft Ground Improved by Weight of Embankment (단계 성토 하중에 의한 개량된 연약지반의 거동 분석)

  • Jeon, Nam-Soo;Pak, Young;Im, Hui-Dae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1190-1193
    • /
    • 2010
  • 본 연구에서는 점토층의 자중압밀을 시행하여 현장강도를 구현하기 위하여 1/70로 축소 모델링하여 원심모형실험을 수행하였으며, 점토구간에 PBD 타설시의 연약지반의 압밀침하거동을 분석하기 위하여서는 1/100로 축소모델링하여 원심모형실험과 전산해석을 실시하였다. 전산해석결과 성토체중심아래의 점토지반의 침하량은 1단계 성토제방하중 하에서 4.8개월 경과 후 최대 침하량은 41.1cm, 2단계 성토하중에서 4.2개월 경과 후의 최대침하량은 78.8, 3단계 성토하중에서 6개월 경과후의 침하량은 93.5cm의 침하가 발생하는 것으로 나타나 수치해석 결과와 원심모형실험결과 값의 유사한 경향을 확인하였다.

  • PDF

Cavitation in Fuel Pump with 2D Cascade Modeling (2차원 Cascade에 의한 연료펌프의 공동발생 해석)

  • Quangnha, Thai;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.483-489
    • /
    • 2009
  • A CFD code was developed to investigate the inception of cavitation around impeller blades of centrifugal fuel pump using two dimensional cascade modeling. With the verification test for numerical validity of the developed code, the prediction of the onset of cavitation was made for the configuration of a newly designed KHP fuel pump. The calculation results show impeller design was free of cavitation if the pump operates within the operational temperature and rotational speed range. However, the cavitation would be relatively easy to occur at off design region of fuel pump where the rotational speed is higher than design limit. Specially, the onset of cavitation is sensitively dependent on the increase in fuel temperature while the decrease in temperature will reduce the possibility of cavitation inception in the pump.

Two-Zone Modeling for Centrifugal Impellers (원심형 임펠러에 대한 이구역 모델링)

  • Oh, Hyoung Woo;Chung, Myung Kyoon;Kim, Jae Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1129-1138
    • /
    • 1999
  • This paper presents a systematic two-zone modeling for reliable performance prediction of centrifugal compressors. In order to improve the predictive capability, a modified jet slip factor is developed and new corrections for the wake flow deviation and mass fraction are suggested based on the comprehensive experimental data of the three Eckardt impellers. The proposed two-zone modeling is tested against nine sets of measured data of centrifugal compressors. The results are also compared with those obtained by the mean streamline analysis. It was found that the predictions by the present two-zone modeling agree fairly well with experimental data for a variety of centrifugal compressors over the wide operating conditions.

Centrifuge Modeling and Numerical Analysis on Breakwater Construction (방파제 축조공사의 Centrifuge 모델링과 수치해석)

  • Yoo, Nam-Jae;Kim, Dong-Gun;Yoon, Dae-Hee
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.81-90
    • /
    • 2011
  • Centrifuge modeling and numerical analysis on works of breakwater construction were performed to investigate the behavior of caisson type of breakwater and foundation treated with the method of DCM (Deep Cement Mixing) under the condition of wave action in field. In centrifuge modeling, construction sequence of breakwater caisson such as preparation of ground, treatment of DCM, installation of rubble mound, placement of breakwater caisson and lateral loading on the breakwater due to wave action were reconstructed. Lateral movement of model breakwater and ground reaction in the vertical direction were monitored during test. Stress concentration ratio between the untreated ground and the treated ground with DCM was evaluated from measurement of vertical stresses on each ground. Numerical analysis with the software of PLAXIS was carried to compare with Results of centrifuge model test. It was found that stability of model breakwater was maintained during stage of construction and the compared results about stress concentration ratio were in relatively good agreements.

  • PDF

Centrifugal and Numerical Modelling on the Behavior of Unpropped Diaphragm Wall (Unpropped Diaphragm Wall 거동에 관한 원심 및 수치모델링)

  • Lee, Cheo-Keun;Ahn, Kwang-Kuk;Heo, Yol
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.2
    • /
    • pp.123-134
    • /
    • 2001
  • 본 연구에서는 화강풍화토 지반상 unpropped diaphragm wall의 거동을 연구하기 위하여 벽체의 근입깊이와 지하수위 조건을 변화시키면서 원심모형실험을 수행하였다. 원심모형실험시 diaphragm wall은 두께 8mm인 알루미늄합금을 사용하였으며, 지반굴착을 재현하기 위하여 zinc chloride 기법을 이용하였다. 수치해석은 대부분의 지반공학문제에 적용할 수 있는 SAGE CRISP 프로그램을 이용하였다. 수치해석에서 모형지반은 수정 Cam-Clay 모델, diaphragm wall은 탄성모델, 지반과 diaphragm wall 사이의 경계면요소는 슬립모델을 사용하여 2차원 평면변형률 조건으로 해석을 수행하였다. 모형실험 결과 파괴면의 직선적인 형태로 파괴면내의 배면측 지반은 벽체를 향하여 하향의 변위를 일으키면서 벽체의 회전에 의해 파괴되었다. 실험 및 유한요소해석 결과 지반의 최대침하량과 최대침하량이 발생하는 위치는 잘 일치하였으며, 깊이에 따른 벽체변위는 선형적인 관계를 나타내었다. 또한, 최대 휨모멘트와 근입깊이로 정규화한 최대 휨모멘트 발생위치($h_{Mmax}$/d=0.4)는 잘 일치하였다.

  • PDF

Centrifuge Modeling on Displacement Shapes of Composite Ground Improved by SCP and GCP (SCP 및 GCP로 개량된 복합지반의 변위 양상에 관한 원심모델링)

  • Heo, Yol;Zheng, Zhaodian;Lee, Cheokeun;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.57-66
    • /
    • 2006
  • In this study, the centrifuge model tests were carried out to evaluate the stress concentration ratio, the deformation modes of piles and the ground movement in clay deposit improved by SCP and GCP piles with changing the replacement ratio(20%, 40%, 60%) under flexible loading. Based on the results obtained, it was shown that the stresses acting on GCP was larger than those acting on SCP with the same replacement ratio. It was evaluated that the average stress concentration ratio of soft clay ground improved by GCP was slightly larger than that of SCP when the replacement ratio is 40%. Only expansion failure occurred in GCP, whereas SCP showed the expansion and shear failure simultaneously.

  • PDF

Centrifuge Modeling on Lateral Flow of Soft Soils and Displacement of Bridge Abutment on the Composite Ground (복합지반상 교대변위 및 지반 측방유동에 관한 원심모델링)

  • Heo, Yol;Park, Sunghun;Yun, Seokhyun;Kwon, Seonuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • In this study, the centrifuge tests were performed to investigate the lateral flow behavior and stability of the ground improved by SCP. The centrifuge tests were fulfilled in the case of the back of abutment filled by EPS (case 1) and soil (case 2), and the potentiometer was installed on the abutment and embankment to measure the vertical and horizontal displacement at the top of abutment. As a result, the vertical displacement measured at the back of abutment was maximum 2.1 m, which was about 12% if compared with the height of embankment. In the case of the back of abutment filled by soil, the vertical and horizontal displacement measured at the top of abutment was 10 cm and 1.1 m, respectively, which exceeded the allowable horizontal displacement. On the other hand, in the case of the back of abutment filled by EPS, the vertical displacement of abutment did nor occur and the horizontal displacement was 1.4 cm. Therefore, the effect of SCP improvement with EPS method adopted to prevent the lateral flow and assure the stability of embankment on the soft ground was far superior.

  • PDF

A benchmark experiment for analogue modeling of extensional basin formation and evaluation of applicability of centrifuge test (인장 분지 형성을 구현하기 위한 상사 모델링 벤치마크 실험 및 원심모형실험의 적용성 평가)

  • Lee, Sung-Bok;Park, Heon-Joon
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.605-614
    • /
    • 2018
  • For physical experiments like analogue modeling that designed for studying geological deformation, reproducibility of the deformation is important to guarantee the reliability of the experiment. In this study, the normal fault generated by extensional stress is benchmarked using a sand box model. The scaling factors for the modeling test are considered and the experiments are conducted by setting the appropriate material, extensional stress, and boundary condition in the same way as in a benchmark experiment. In addition, a large centrifuge facility is used to vary the centrifugal acceleration and extension rate in the same sized model to account for the scaling factors of the physical quantity during extensional behavior. At 1 g benchmark condition and a centrifugal field at 10 g, a constant rate of the extensional stress is implemented and the topographic evolution is reliably measured. In this study, the reliability and applicability of large centrifuge model tests are evaluated for formulating experiments designed to study geological deformation.