• Title/Summary/Keyword: 원소별 지속 시간

Search Result 4, Processing Time 0.021 seconds

Characteristics of Laser-Induced Breakdown Spectroscopy (LIBS) at Space Environment for Space Resources Exploration (우주 자원 탐사를 위한 레이저 유도 플라즈마 분광분석법의 우주 환경에서의 특성 분석)

  • Choi, Soo-Jin;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.346-353
    • /
    • 2012
  • The Laser-Induced Breakdown Spectroscopy (LIBS) has great advantages as an analytical technique, namely real-time analysis without sample preparation, ideal for mobile chemical sensor for space exploration. The LIBS plasma characteristics are strongly dependent on the surrounding pressure. In this study, seven types of target (C, Ti, Ni, Cu, Sn, Al, Zn) were investigated for their elemental lifetime. The target was located in vacuum chamber which has the pressure range of 760 to $10^{-5}$ torr. As the pressure is decreased, the elemental lifetimes of carbon and titanium declined, while all other targets showed increased lifetimes until reaching 1 torr and declined with continued pressure decrease. The boiling point and electronegativity amongst the physicochemical properties of the samples are used to explain this peculiarity.

Distributions and Pollution History of Heavy Metals in Nakdong Estuary Sediments (낙동강 하구역 퇴적물 중금속의 분포와 오염의 역사 추정)

  • Cho, Jin-Hyung;Park, Nam-Joon;Kim, Kee-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.285-294
    • /
    • 2000
  • In order to determine the horizontal and vertical distributions of metals and prospect the recent metal pollution history in Nakdong Estuary, we took surface and core sediments. Maximum value of organic matter occurs at the upstream site located 4 km from Nakdong barrage, and the concentration of trace metals (Zn, Cu, and Pb etc.) decrease seaward in the estuary. The sedimentation rates, based on $^{210}$Pb$_{ex}$ and $^{137}$Cs activities, were 0.34 cm/yr in inside of barrage (core 1) and 0.25 cm/yr in Changrim (core 4). Sediment mixing layer does not exist in core 1, where anoxic condition is known to be prevail. The topmost sediment layer of core 4 (<3.5 cm) is severely mixed. At sites 1 and 4, concentrations of Cu slowly increased during the period of 1920-1970, rapidly increased during 1970-1990, and followed by slight decrease after 1990. Zn contents increased in early 1960s and peaked in 1993, and followed by decrease after 1990s. Pb has increased continuously since early 1970s. At the downstream of the barrage, Cu and Zn have increased in the topmost layer. The trend of increase of Cu is evident after 1950 (11 cm in sediment depth). Overall trend of heavy metal concentration clearly indicates the pollution has been increasing after the construction of the barrage.

  • PDF

Study of Spatiotemporal Variations and Origin of Nitrogen Content in Gyeongan Stream ( 경안천 내 질소 함량의 시공간적 변화와 기원 연구)

  • Jonghoon Park;Sinyoung Kim;Soomin Seo;Hyun A Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.139-153
    • /
    • 2023
  • This study aimed to understand the spatiotemporal variations in nitrogen content in the Gyeongan stream along the main stream and at the discharge points of the sub-basins, and to identify the origin of the nitrogen. Field surveys and laboratory analyses, including chemical compositions and isotope ratios of nitrate and boron, were performed from November 2021 to November 2022. Based on the flow duration curve (FDC) derived for the Gyeongan stream, the dry season (mid-December 2021 to mid-June 2022) and wet season (mid-June to early November 2022) were established. In the dry season, most samples had the highest total nitrogen(T-N) concentrations, specifically in January and February, and the concentrations continued to decrease until May and June. However, after the flood season from July to September, the uppermost subbasin points (Group 1: MS-0, OS-0, GS-0) where T-N concentrations continually decreased were separated from the main stream and lower sub-basin points (Group 2: MS-1~8, OS-1, GS-1) where concentrations increased. Along the main stream, the T-N concentration showed an increasing trend from the upper to the lower reaches. However, it was affected by those of the Osan-cheon and Gonjiamcheon, the tributaries that flow into the main stream, resulting in respective increases or decreases in T-N concentration in the main stream. The nitrate and boron isotope ratios indicated that the nitrogen in all samples originated from manure. Mechanisms for nitrogen inflow from manure-related sources to the stream were suggested, including (1) manure from livestock wastes and rainfall runoff, (2) inflow through the discharge of wastewater treatment plants, and (3) inflow through the groundwater discharge (baseflow) of accumulated nitrogen during agricultural activities. Ultimately, water quality management of the Gyeongan stream basin requires pollution source management at the sub-basin level, including its tributaries, from a regional context. To manage the pollution load effectively, it is necessary to separate the hydrological components of the stream discharge and establish a monitoring system to track the flow and water quality of each component.

Tephra Origin of Goryeri Archaeological Site, Milyang Area, Korea (밀양 고례리 화산 유리물질 기원 해석)

  • 김주용;양동윤;박영철
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 1999
  • Goryeri archaeological site is located in the upstream valley of the Danjang River. The basement rocks of the area are composed of the Cretaceous to Palaeogene biotite granite (KbGr), acidic dyke (Kad), Milyang Andesite (Kma) and Jyunggagsan Formation. Among them Milyang Andesite and Jyunggagsan Formation are prevailed in archaeological site and they are composed of reddish brown tuffaceous shale, sandstone and conglomerate, with intercalations of acidic tuffs and lapilli tuffs. The purpose of this research is not only to compare REE pattern of the soil-sedimentary deposits with those of surrounding rocks, but also to identify vitric tephra in the soil-sedimentary deposits derived from the andesite, acidic tuff and lapilii tuff, in order to illucidate the provenance of the vitric tephra. The rare earth element(REE) of the soils and sedimentary deposits results in the same REE pattern with those analyzed from the surrounding basement rocks. This indicates that the soils and sedimentary deposits are originated from the surrounding basement rocks, most probably from the andesite and lapilli tuff. In addition, vitric tephra were identified both in the Quaternary in-situ weathered soils and sedimentary deposits (PMU-13 and PMU-17), and in the weathered surrounding lapilli tuff. These vitric tephra are considered to be different from those of Japanese AT(Aira Tanzawa) -tephra. The latter is predominant with clean, platty, bubble-walled and Y-shaped vitrics, while the former is conspicuous with those shapes of large and diverse size and devitrified, as well as having secondarily bubbled-surfaces reflecting surface weathering. The size of vitric fragments in the Goryeri site is about 300${\mu}{\textrm}{m}$ and large in size in compasion to 150${\mu}{\textrm}{m}$ of Japanese AT-Tephra. The interim results of the research are contradictary to the explanations based on a series of AT-tephra researches carried by Japanese scholar. In short, the vitric materials of the Goryeri archaeological site are most probably originated from the weathering products of the surrounding basement rocks, and are different from the AT-tephra in their size, shape and devitrification properties. Thus it is highly recommended to have a further comprehensive research which is more emphasized the magmatic genesis of these vitric tephra in addition to the external shape and morphology.

  • PDF