• Title/Summary/Keyword: 원뿔표적

Search Result 5, Processing Time 0.021 seconds

Calculation of the ultrasonic radiation force acting on a rigid circular cone and the study on the metrology for the acoustic power measurement (강체원뿔표적에 대한 초음파 방사힘 계산과 음향파워측정모델에 관한 연구)

  • Kyungmin Baik;Jooho Lee;Elmina B. C. Fritzie;Yong Tae Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.335-343
    • /
    • 2024
  • This paper came up with the theoretical modelling of the metrology for the acoustic power using ultrasonic radiation force and showed some theoretical results. In order to do this, a scattering model for a rigid circular cone based upon the Kirchhoff approximation was made, which was followed by the calculation of acoustic power, and then, was converted to the radiation force. From these works, it provided the accuracy and limitation of the conventional method using a circular cone, and the expanded metrology modelling that can be applied to a circular cone with arbitrary apex angle. Using these, this study provided the dependence of the metrology for the acoustic power using ultrasonic radiation force on the frequency and the size of the target. As a result, the correction was yielded in the value of the acoustic power calculated by the suggested International Electrotechnical Commission (IEC) method, which needs to be added when the frequency and the size of the target was considered.

A Study on Photoneutron Characteristics Generated from Target and Collimator of Electron Linear Accelerator for Container Security Inspection using MCNP6 Code (MCNP6 코드를 이용한 컨테이너 보안 검색용 전자 선형가속기 표적과 조준기에서 발생한 광중성자 특성에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.4
    • /
    • pp.455-465
    • /
    • 2020
  • The purpose of this study is to evaluate the photoneutron characteristics generated by the linear accelerator target and collimator. The computer simulation design firstly, consisted of a target, a single material target and a composite material target. Secondly, it consisted of a cone beam and a fan beam depending on the type of the collimator. Finally, the material of the fan beam collimator is composed of a single material composed of only lead (Pb) and a composite material collimator composed of tungsten (W) and lead (Pb). The research method calculated the photoneutron production rate and energy spectrum using F2 tally from the surface of a virtual sphere at a distance of 100 cm from the target. As a result, firstly the photoneutron production rate was 20% difference, depending on the target. Secondly, depending on the type of the collimator, there was a 10% difference. Finally, depending on the collimator material, there was a 40% difference. In the photoneutron energy spectrum, the average photoneutron flux tended to be similar to the photoneutron production rate. As a result, it was confirmed that the 9 MeV linear accelerator photoneutron are production increased more by the collimator than by the target, and by the material, not the type of the collimator. Selecting and operating targets and collimator with low photoneutron production will be the most active radiation protection. Therefore, it is considered that this research can be a useful data for introducing and operating and radiation protection of a linear accelerator for container security inspection.

Development of Ideal Model Based Optimization Procedure with Heuristic Knowledge (정위적 방사선 수술에서의 이상표적모델과 경험적 지식을 활용한 수술계획 최적화 방법 개발)

  • 오승종;송주영;최경식;김문찬;이태규;서태석
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.84-93
    • /
    • 2004
  • Stereotactic radiosurgery (SRS) is a technique that delivers a high dose to a target legion and a low dose to a critical organ through only one or a few irradiations. For this purpose, many mathematical methods for optimization have been proposed. There are some limitations to using these methods: the long calculation time and difficulty in finding a unique solution due to different tumor shapes. In this study, many clinical target shapes were examined to find a typical pattern of tumor shapes from which some possible ideal geometrical shapes, such as spheres, cylinders, cones or a combination, are assumed to approximate real tumor shapes. Using the arrangement of multiple isocenters, optimum variables, such as isocenter positions or collimator size, were determined. A database was formed from these results. The optimization procedure consisted of the following steps: Any shape of tumor was first assumed to an ideal model through a geometry comparison algorithm, then optimum variables for ideal geometry chosen from the predetermined database, followed by a final adjustment of the optimum parameters using the real tumor shape. Although the result of applying the database to other patients was not superior to the result of optimization in each case, it can be acceptable as a plan starling point.

  • PDF

Mid-course Trajectory Optimization for Boost-Glide Missiles Based on Convex Programming (컨벡스 프로그래밍을 이용한 추진-활공 유도탄의 중기궤적 최적화)

  • Kwon, Hyuck-Hoon;Hong, Seong-Min;Kim, Gyeong-Hun;Kim, Yoon-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.21-30
    • /
    • 2021
  • Mid-course trajectory of the missiles equipped with seeker should be designed to detect target within FOV of seeker and to maximize the maneuverability at the point of transition to terminal guidance phase. Because the trajectory optimization problems are generally hard to obtain the analytic solutions due to its own nonlinearity with several constraints, the various numerical methods have been presented so far. In this paper, mid-course trajectory optimization problem for boost-glide missiles is calculated by using SOCP (Second-Order Cone Programming) which is one of convex optimization methods. At first, control variable augmentation scheme with a control constraint is suggested to reduce state variables of missile dynamics. And it is reformulated using a normalized time approach to cope with a free final time problem and boost time problem. Then, partial linearization and lossless convexification are used to convexify dynamic equation and control constraint, respectively. Finally, the results of the proposed method are compared with those of state-of-the-art nonlinear optimization method for verification.

Comparison and evaluation of treatment plans using Abdominal compression and Continuous Positive Air Pressure for lung cancer SABR (폐암의 SABR(Stereotactic Ablative Radiotherapy)시 복부압박(Abdominal compression)과 CPAP(Continuous Positive Air Pressure)를 이용한 치료계획의 비교 및 평가)

  • Kim, Dae Ho;Son, Sang Jun;Mun, Jun Ki;Park, Jang Pil;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.33
    • /
    • pp.35-46
    • /
    • 2021
  • Purpose : By comparing and analyzing treatment plans using abdominal compression and The Continuous Positive Air Pressure(CPAP) during SABR of lung cancer, we try to contribute to the improvement of radiotherapy effect. Materials & Methods : In two of the lung SABR patients(A, B patient), we developed a SABR plan using abdominal compression device(the Body Pro-Lok, BPL) and CPAP and analyze the treatment plan through homogeneity, conformity and the parameters proposed in RTOG 0813. Furthermore, for each phase, the X, Y, and Z axis movements centered on PTV are analyzed in all 4D CTs and compared by obtaining the volume and average dose of PTV and OAR. Four cone beam computed tomography(CBCT) were used to measure the directions from the center of the PTV to the intrathoracic contacts in three directions out of 0°, 90°, 180° and 270°, and compare the differences from the average distance values in each direction. Result : Both treatment plans obtained using BPL and CPAP followed recommendations from RTOG, and there was no significant difference in homogeneity and conformity. The X-axis, Y-axis, and Z-axis movements centered on PTV in patient A were 0.49 cm, 0.37 cm, 1.66 cm with BPL and 0.16 cm, 0.12 cm, and 0.19 cm with CPAP, in patient B were 0.22 cm, 0.18 cm, 1.03 cm with BPL and 0.14 cm, 0.11 cm, and 0.4 cm with CPAP. In A patient, when using CPAP compared to BPL, ITV decreased by 46.27% and left lung volume increased by 41.94%, and average dose decreased by 52.81% in the heart. In B patient, volume increased by 106.89% in the left lung and 87.32% in the right lung, with an average dose decreased by 44.30% in the stomach. The maximum difference of A patient between the straight distance value and the mean distance value in each direction was 0.05 cm in the a-direction, 0.05 cm in the b-direction, and 0.41 cm in the c-direction. In B patient, there was a difference of 0.19 cm in the d-direction, 0.49 cm in the e-direction, and 0.06 cm in the f-direction. Conclusion : We confirm that increased lung volume with CPAP can reduce doses of OAR near the target more effectively than with BPL, and also contribute more effectively to restriction of tumor movement with respiration. It is considered that radiation therapy effects can be improved through the application of various sites of CPAP and the combination with CPAP and other treatment machines.