• Title/Summary/Keyword: 원격탐사 빅데이터

Search Result 13, Processing Time 0.028 seconds

ISO/IEC 9126 Quality Model-based Assessment Criteria for Measuring the Quality of Big Data Analysis Platform (빅데이터 분석 플랫폼 평가를 위한 ISO/IEC 9126 품질 모델 기반 평가준거 개발)

  • Lee, Jong Yun
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.459-467
    • /
    • 2015
  • The analysis platform of remote-sensing big data is a system that downloads data from satellites, transforms it to a data type of L3, and then analyzes it and produces its analysis results. The objective of this paper is to develop ISO/IEC 9126-1 software quality model-based assessment criteria, in order to evaluate the quality of remote-sensing big data analysis platform. Its detailed research contents are as follows. First, the ISO/IEC 9216 standards and previous software evaluation models will be reviewed. Second, this paper will define evaluation areas, evaluation elements, and evaluation items for measuring the quality of big data analysis platform. Third, the validity of the assessment criteria will be verified by statistical experiments through content validity, reliability validity, and construct validity, by using SPSS 20.0 and Amos 20.0 software. The construct validity will also be conducted by performing the confirmatory factor analysis and path analysis. Lastly, it is significant that our research result demonstrates the first evaluation criteria in measuring the quality of big data analysis platform. It is also expected that our assessment criteria could be used as the basis information for evaluation criteria in the platforms that will be developed in the future.

Semantic Building Segmentation Using the Combination of Improved DeepResUNet and Convolutional Block Attention Module (개선된 DeepResUNet과 컨볼루션 블록 어텐션 모듈의 결합을 이용한 의미론적 건물 분할)

  • Ye, Chul-Soo;Ahn, Young-Man;Baek, Tae-Woong;Kim, Kyung-Tae
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1091-1100
    • /
    • 2022
  • As deep learning technology advances and various high-resolution remote sensing images are available, interest in using deep learning technology and remote sensing big data to detect buildings and change in urban areas is increasing significantly. In this paper, for semantic building segmentation of high-resolution remote sensing images, we propose a new building segmentation model, Convolutional Block Attention Module (CBAM)-DRUNet that uses the DeepResUNet model, which has excellent performance in building segmentation, as the basic structure, improves the residual learning unit and combines a CBAM with the basic structure. In the performance evaluation using WHU dataset and INRIA dataset, the proposed building segmentation model showed excellent performance in terms of F1 score, accuracy and recall compared to ResUNet and DeepResUNet including UNet.

Introduction to Development of Comprehensive Land Management Technology Using Satellite Image Information Bigdata (위성정보 빅데이터 활용 국토종합관리 기술개발사업 소개)

  • Taejung Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_4
    • /
    • pp.1069-1073
    • /
    • 2023
  • A research project titled as Development of Comprehensive Land Management Technology using Satellite Image Information, funded by the Ministry of Land and Transportation, is being conducted to improve the efficiency of land management and to boost satellite image utilization in the private sector. This editorial describes the introduction of the project and papers presented in this special edition.

Research of Water-related Disaster Monitoring Using Satellite Bigdata Based on Google Earth Engine Cloud Computing Platform (구글어스엔진 클라우드 컴퓨팅 플랫폼 기반 위성 빅데이터를 활용한 수재해 모니터링 연구)

  • Park, Jongsoo;Kang, Ki-mook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1761-1775
    • /
    • 2022
  • Due to unpredictable climate change, the frequency of occurrence of water-related disasters and the scale of damage are also continuously increasing. In terms of disaster management, it is essential to identify the damaged area in a wide area and monitor for mid-term and long-term forecasting. In the field of water disasters, research on remote sensing technology using Synthetic Aperture Radar (SAR) satellite images for wide-area monitoring is being actively conducted. Time-series analysis for monitoring requires a complex preprocessing process that collects a large amount of images and considers the noisy radar characteristics, and for this, a considerable amount of time is required. With the recent development of cloud computing technology, many platforms capable of performing spatiotemporal analysis using satellite big data have been proposed. Google Earth Engine (GEE)is a representative platform that provides about 600 satellite data for free and enables semi real time space time analysis based on the analysis preparation data of satellite images. Therefore, in this study, immediate water disaster damage detection and mid to long term time series observation studies were conducted using GEE. Through the Otsu technique, which is mainly used for change detection, changes in river width and flood area due to river flooding were confirmed, centered on the torrential rains that occurred in 2020. In addition, in terms of disaster management, the change trend of the time series waterbody from 2018 to 2022 was confirmed. The short processing time through javascript based coding, and the strength of spatiotemporal analysis and result expression, are expected to enable use in the field of water disasters. In addition, it is expected that the field of application will be expanded through connection with various satellite bigdata in the future.

Research Trend of the Remote Sensing Image Analysis Using Deep Learning (딥러닝을 이용한 원격탐사 영상분석 연구동향)

  • Kim, Hyungwoo;Kim, Minho;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.819-834
    • /
    • 2022
  • Artificial Intelligence (AI) techniques have been effectively used for image classification, object detection, and image segmentation. Along with the recent advancement of computing power, deep learning models can build deeper and thicker networks and achieve better performance by creating more appropriate feature maps based on effective activation functions and optimizer algorithms. This review paper examined technical and academic trends of Convolutional Neural Network (CNN) and Transformer models that are emerging techniques in remote sensing and suggested their utilization strategies and development directions. A timely supply of satellite images and real-time processing for deep learning to cope with disaster monitoring will be required for future work. In addition, a big data platform dedicated to satellite images should be developed and integrated with drone and Closed-circuit Television (CCTV) images.

Development of drought monitoring system using spatial information big data (공간정보 빅데이터를 활용한 가뭄 모니터링 체계 구축)

  • Won-Ho Nam;Hee-Jin Lee;Chang-Kyun Park;Jong-Hun Kam;Ho-Sun Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.331-331
    • /
    • 2023
  • 일반적으로 가뭄을 해석하기 위하여 가뭄심도, 빈도, 피해면적 및 기간의 영향 등을 고려한 가뭄지수를 이용하며, 이러한 가뭄지수는 주로 지점자료 기반 지상관측자료를 활용하여 산정한다. 하지만 지점자료 특성상 미계측 지역에 대한 정확한 데이터 취득이 어렵기 때문에 미계측 지역에 대한 가뭄 분석의 한계가 발생한다. 다양한 계측기반의 지상센서들이 확충되면서 통계학적 기법기반 공간분포 개선방안을 제시하고 있지만, 정확한 가뭄평가 자료가 추가 및 개선되는 것이 중요하다. 본 연구에서는 원격탐사기술을 활용하여 지점자료의 한계를 극복한 격자기반의 공간정보를 표출함으로써 새로운 가뭄모니터링 방안을 제시하는 것을 목표로 한다. 이를 위해 지상관측자료로 가뭄을 판단하기 어려운 미계측 지역에 대한 가뭄 판단 및 예측 정확도 향상을 위하여 원격탐사기술을 활용한 공간정보 빅데이터를 구축하고자 한다. 미국 국립가뭄경감센터에서 제시한 식생가뭄반응지수 (VegDRI, Vegetation Drought Response Index)는 식생지수, 기상학적 가뭄지수, 지역적 특성을 반영한 생물물리학적 정보를 통합한 하이브리드 가뭄지수로 가뭄과 관련된 공간정보를 활용하여 가뭄을 판단하는 지표이다. VegDRI 산정을 위하여 ERA5의 격자기반 강수자료, MODIS 센서 기반 식생지수 등 격자기반의 공간정보를 수집하였으며, 전처리 모듈을 구축하였다. 또한, 기존 기상학적 가뭄지수인 표준강수지수 (SPI, Standardized Precipitation Index)와 비교를 통해 VegDRI의 국내 적용성을 평가하였으며, 국내 가뭄사례에 적용하여 적절한 가뭄 판단지표로써 활용할 수 있을 것으로 판단된다.

  • PDF

Review of Remote Sensing Technology for Forest Canopy Height Estimation and Suggestions for the Advancement of Korea's Nationwide Canopy Height Map (원격탐사기반 임분고 추정 모델 개발 국내외 현황 고찰 및 제언)

  • Lee, Boknam;Jung, Geonhwi;Ryu, Jiyeon;Kwon, Gyeongwon;Yim, Jong Su;Park, Joowon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.435-449
    • /
    • 2022
  • Forest canopy height is an indispensable vertical structure parameter that can be used for understanding forest biomass and carbon storage as well as for managing a sustainable forest ecosystem. Plot-based field surveys, such as the national forest inventory, have been conducted to provide estimates of the forest canopy height. However, the comprehensive nationwide field monitoring of forest canopy height has been limited by its cost, lack of spatial coverage, and the inaccessibility of some forested areas. These issues can be addressed by remote sensing technology, which has gained popularity as a means to obtain detailed 2- and 3-dimensional measurements of the structure of the canopy at multiple scales. Here, we reviewed both international and domestic studies that have used remote sensing technology approaches to estimate the forest canopy height. We categorized and examined previous approaches as: 1) LiDAR approach, 2) Stereo or SAR image-based point clouds approach, and 3) combination approach of remote sensing data. We also reviewed upscaling approaches of utilizing remote sensing data to generate a continuous map of canopy height across large areas. Finally, we provided suggestions for further advancement of the Korean forest canopy height estimation system through the use of various remote sensing technologies.

Trend Analysis of Earthquake Researches in the World (전세계의 지진 연구의 추세 분석)

  • Yun, Sul-Min;Hamm, Se-Yeong;Jeon, Hang-Tak;Cheong, Jae-Yeol
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.76-87
    • /
    • 2021
  • In this study, temporal trend of researches in earthquake with groundwater level, water quality, radon, remote sensing, electrical resistivity, gravity, and geomagnetism was searched from 2001 to 2020, using the journals indexed in Web of Science, and the number of articles published in international journals was counted in relation to the occurrences of earthquakes (≥Mw 5.0, ≥Mw 6.0, ≥Mw 7.0, ≥Mw 8.0, and ≥Mw 9.0). The number of articles shows an increasing trend over the studied period. This is explained by that studies on earthquake precursor and seismic monitoring becomes active in various fields with integrated data analysis through the development of remote sensing technology, progress of measurement equipment, and big data. According to Mann-Kendall and Sen's tests, gravity-related articles exhibit an increasing trend of 1.30 articles/yr, radon-related articles (0.60 articles/yr), groundwater-related articles (0.70 articles/yr), electrical resistivity-related articles (0.25 articles/yr), and remote-sensing-related articles (0.67 articles/yr). By cross-correlation analysis of the number of articles in each field with removing trend effect and the number of earthquakes of ≥Mw 5.0, ≥Mw 6.0, ≥Mw 7.0, ≥Mw 8.0, and ≥Mw 9.0, radon and remote sensing fields exhibit a high cross-correlation with a delay time of one year. In addition, large-scale earthquakes such as the 2004 and 2005 Sumatra earthquake, the 2008 Sichuan earthquake, the 2010 Haiti earthquake, and the 2010 Chile earthquake are estimated to be related with the increase in the number of articles in the corresponding periods.

A Performance Test of Mobile Cloud Service for Bayesian Image Fusion (베이지안 영상융합을 적용한 모바일 클라우드 성능실험)

  • Kang, Sanggoo;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.4
    • /
    • pp.445-454
    • /
    • 2014
  • In recent days, trend technologies for cloud, bigdata, or mobile, as the important marketable keywords or paradigm in Information Communication Technology (ICT), are widely used and interrelated each other in the various types of platforms and web-based services. Especially, the combination of cloud and mobile is recognized as one of a profitable business models, holding benefits of their own. Despite these challenging aspects, there are a few application cases of this model dealing with geo-based data sets or imageries. Among many considering points for geo-based cloud application on mobile, this study focused on a performance test of mobile cloud of Bayesian image fusion algorithm with satellite images. Two kinds of cloud platform of Amazon and OpenStack were built for performance test by CPU time stamp. In fact, the scheme for performance test of mobile cloud is not established yet, so experiment conditions applied in this study are to check time stamp. As the result, it is revealed that performance in two platforms is almost same level. It is implied that open source mobile cloud services based on OpenStack are enough to apply further applications dealing with geo-based data sets.

Derivation of Inherent Optical Properties Based on Deep Neural Network (심층신경망 기반의 해수 고유광특성 도출)

  • Hyeong-Tak Lee;Hey-Min Choi;Min-Kyu Kim;Suk Yoon;Kwang-Seok Kim;Jeong-Eon Moon;Hee-Jeong Han;Young-Je Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.695-713
    • /
    • 2023
  • In coastal waters, phytoplankton,suspended particulate matter, and dissolved organic matter intricately and nonlinearly alter the reflectivity of seawater. Neural network technology, which has been rapidly advancing recently, offers the advantage of effectively representing complex nonlinear relationships. In previous studies, a three-stage neural network was constructed to extract the inherent optical properties of each component. However, this study proposes an algorithm that directly employs a deep neural network. The dataset used in this study consists of synthetic data provided by the International Ocean Color Coordination Group, with the input data comprising above-surface remote-sensing reflectance at nine different wavelengths. We derived inherent optical properties using this dataset based on a deep neural network. To evaluate performance, we compared it with a quasi-analytical algorithm and analyzed the impact of log transformation on the performance of the deep neural network algorithm in relation to data distribution. As a result, we found that the deep neural network algorithm accurately estimated the inherent optical properties except for the absorption coefficient of suspended particulate matter (R2 greater than or equal to 0.9) and successfully separated the sum of the absorption coefficient of suspended particulate matter and dissolved organic matter into the absorption coefficient of suspended particulate matter and dissolved organic matter, respectively. We also observed that the algorithm, when directly applied without log transformation of the data, showed little difference in performance. To effectively apply the findings of this study to ocean color data processing, further research is needed to perform learning using field data and additional datasets from various marine regions, compare and analyze empirical and semi-analytical methods, and appropriately assess the strengths and weaknesses of each algorithm.