• Title/Summary/Keyword: 원거리 모델

Search Result 128, Processing Time 0.025 seconds

Shear Wave Velocity Structure Beneath White Island Volcano, New Zealand, from Receiver Function Inversion and H-κ Stacking Methods (수신함수 역산 및 H-κ 중합법을 이용한 뉴질랜드 White Island 화산 하부의 S파 속도구조)

  • Park, Iseul;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.66-73
    • /
    • 2014
  • To estimate the shear-velocity ($v_s$) structure beneath the WIZ station on White Island in New Zealand, we applied receiver function (RF) inversion and H-${\kappa}$ stacking methods to 362 teleseismic events (Mw > 5.5) recorded during April 20, 2007 to September 6, 2013. Using 71 RFs with errors less than 20% after 200 iterative computations, we determined that the depth to Moho of $v_s$ = 4.35 km/s is $24{\pm}1km$ within a 15 km radius of the station. In an 1-d $v_s$ model derived by RF inversions, a 4-km thick low-velocity layer (LVL) at depths of 18 ~ 22 km was identified in the lower crust. This LVL, which is 0.15 km/s slower than the rocks above and below it, may indicate the presence of a deep magma reservoir. The H-${\kappa}$ stacking method yielded an estimate of the depth to the Moho of 24.5 km, which agrees well with the depth determined by RF inversions. The low $v_p/v_s$ ratio of 1.64 may be due to the presence of gas-filled rock or hot crystallizing magma.

Tension Estimation for Hanger Cables on a Suspension Bridge Using Image Signals (영상신호를 이용한 현수교 행어케이블의 장력 추정)

  • Kim, Sung-Wan;Yun, Da-Woon;Park, Si-Hyun;Kong, Min-Joon;Park, Jae-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.112-121
    • /
    • 2020
  • In suspension bridges, hanger cables are the main load-supporting members. The tension of the hanger cables of a suspension bridge is a very important parameter for assessing the integrity and safety of the bridge. In general, indirect methods are used to measure the tension of the hanger cables of a suspension bridge in traffic use. A representative indirect method is the vibration method, which extracts modal frequencies from the cables' responses and then measures the cable tension using the cables' geometric conditions and the modal frequencies. In this study, the image processing technique is applied to facilitate the estimation of the dynamic responses of the cables using the image signal, for which a portable digital camcorder was used due to its convenience and cost-efficiency. Ambient vibration tests were conducted on a suspension bridge in traffic use to verify the validity of the back analysis method, which can estimate the tension of remote hanger cables using the modal frequencies as a parameter. In addition, the tension estimated through back analysis method, which was conducted to minimize the difference between the modal frequencies calculated using finite element analysis of the hanger cables and the measured modal frequencies, was compared with that measured using the vibration method.

Structural Behavior of Reinforced Concrete Members Subjected to Axial and Blast Loads Using Nonlinear Dynamic Analysis (비선형 동적해석을 이용한 축하중과 폭발하중을 동시에 받는 철근콘크리트 부재의 구조 거동 분석)

  • Lee, Seung-Hoon;Kim, Han-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.3
    • /
    • pp.141-148
    • /
    • 2022
  • In this study, the structural behavior of reinforced concrete members under simultaneous axial and blast loads was analyzed. Nonlinear dynamic analysis verification was performed using the experimental data of panels under fundamental blast load as well as those of reinforced concrete columns subjected to axial and blast loads. Because Autodyn is a program designed only for dynamic analysis, an analysis process is devised to simulate the initial stress state of members under static loads, such as axial loads. A total of 80 nonlinear dynamic finite element analysis procedures were conducted by selecting parameters corresponding to axial load ratios and scaled distances ranging 0%~70% and 1.1~2.0 (depending on the equivalent of TNT), respectively. The structural behavior was compared and analyzed with the corresponding degree of damage and maximum lateral displacement through the changes in axial load ratio and scaled distance. The results show that the maximum lateral displacement decreases due to the increase in column stiffness under axial loads. In view of the foregoing, the formulated analysis process is anticipated to be used in developing blast-resistant design models where structural behavior can be classified into three areas considering axial load ratios of 10%~30%, 30%~50%, and more than 50%.

Analysis of Consciousness and Model on Land for the Another use After Quarrying (채석장의 부지 활용에 대한 의식 및 모델 분석)

  • Park, Jae Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.387-394
    • /
    • 2012
  • The study was conducted to develop an effective forest resources use models for an alternate use of abandoned quarry by an attitude survey. According to the result of survey, a pessimistic view due to dust, noise pollution, and forest damage was 5% higher than an affirmative view by economic benefits from the development of quarry. The 42% of the respondents preferred the alternate use of abandoned quarry and the 25% of the respondents wanted an art and cultural space. The optimum size of alternate use was 5-10 ha (43%) with the requirement of nearby residents (32%). According to the SWOT analysis for abandoned quarry, the strength factors were an effective use of land, the content development of modern industrial inheritance + cultural and art fusion, attraction for nearby city and visitors, a harmony of beauty landscape and clean environment, and a sustainable increase of domestic and foreign visitors with the 5-day-work week. The opportunity factors were the improvement of traffic networks through KTX and local highway, the creation of the new growth engines with the establishment of artistic creation belts, the providing of unique cultural and art space through grafting of tour and education, the creation of local income through stone processed goods, and the vitalization of local development through eco-city. The weakness factors were a psychological remoteness and backwardness, and the weakness of staying tour infra. The threat factors were a poor financial support for sustainable development in nearby quarry and a modify of legal and institutional system for the alternated use of abandoned quarry. The developed restoration models for the alternate use in abandoned quarry are classified to a sculpture park, a waterfall and lake park, a rock-climbing, a sports park + forest park, a native botanical garden, a culture and art park, a complex park, a water storage site, a water storage site to extinguish forest fire, a geriatric hospital, an agricultural facility, and a school site types etc. The results suggest that the alternate use in the abandoned soil and stone quarry is needed to establish facility use models with consideration of user's preference.

Analysis of Crustal Velocity Structure Beneath Gangwon Province, South Korea, Using Joint Inversion of Receiver Functions and Surface Wave Dispersion (수신함수와 표면파 분산의 연합 역산을 사용한 강원도 지역 하부의 지각속도구조 분석)

  • Jeong-Yeon Hwang;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.277-291
    • /
    • 2023
  • To analyze the crustal velocity structures beneath 21 broadband seismic stations in Gangwon Province, South Korea, we first applied the H-κ stacking method to 139 teleseismic event data (Mw ≥ 5.8 and the epicentral distance of 30° - 90°) occurring between March 18, 2019 and December 31, 2022 to estimate the Moho depths and Vp/Vs ratios beneath each station. The Moho depths and Vp/Vs ratios from the H-κ stacking method range from 24.9 to 33.2 km depth and 1.695 - 1.760, respectively, and the estimated Vp/Vs ratios were applied to the joint inversion of receiver functions and surface wave dispersion to obtain 1-D crustal velocity models beneath each station. The resulting Moho depths range from 25.9 to 33.7 km depth, similar to the results from the H-κ stacking method. Moho depth results from the both methods are generally consistent with Airy's isostasy. The 1-D crustal velocity models confirm that the existence of 2 km thick low-velocity layers with P-wave velocities of 5 km/s or less at some stations in the Taebaeksan basin, and at the stations CHNB and GAPB in northern Gangwon Province, which are located above the Cenozoic sedimentary layer. The station SH2B, although not overlying a sedimentary layer, has a low P-wave velocity near the surface, which is probably due to various factors such as weathering of the bedrock. We also observe a velocity inversion with decreasing velocity with depth at all stations within 4 - 12 km depths, and mid-crustal discontinuities possibly due to density differences in the rocks at around 10 km depth below some stations.

A Study on the Reproducibility of 3D Shape Model of Garden Cultural Heritage using Photogrammetry with SNS Photographs - Focused on Soswaewon Garden, Damyang(Scenic Site No.40) - (SNS 사진과 사진측량을 이용한 정원유산의 3차원 형상 재현 가능성 연구 - 명승 제40호 담양 소쇄원(潭陽 瀟灑園)을 대상으로 -)

  • Kim, Choong-Sik;Lee, Sang-Ha
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.4
    • /
    • pp.94-104
    • /
    • 2018
  • This study examined photogrammetric reconstruction techniques that can measure the original form of a cultural property utilizing photographs taken in the past. During the research process, photographs taken in the past as well as photograph on the internet of Soswaewon Garden in Damyang(scenic site 40) were collected and utilized. The landscaping structures of Maedae, Aiyangdan, Ogokmun Wall, and Yakjak and natural scenery Gwangseok, of which photographs can be taken from any 360 degree direction from a close distance or a far distance without any barriers in the way, were selected and tested for the possibility of reproducing three-dimensional shapes. The photography method of 151 landscape photographs (58.6%) from internet portal sites for the aforementioned five landscape subjects containing information on the date the photograph was taken, focal length, and exposure were analyzed. As a result of the analysis, it was revealed that the majority of the photographs tend to focus on important parts of each subject. In addition, we discovered that there are two or three photography methods that internet users preferred in regards to each landscape subject. For the purposes of the experiment, photographs in which a single scene consistently appears for each landscape subject and it was determined that there was a high level of preference related to the photography method were analyzed, and three-dimensional mesh shape model was produced with a photoscan program to analyze the reproducibility of three-dimensional shapes. Based on the results of the reproduction, it was relatively possible to reproduce three-dimensional shapes for artifacts such as Ogukmun wall, Maedae, and Aeyangdan, but it was impossible to reproduce three-dimensional images for natural scenery or an object that has similar texture such as Yakjak and Gwangseok. As a result of experimentation related to the reconstruction of three-dimensional shapes with the photographs taken on site using a photography method similar to that of the photographs selected as previously mentioned, there was success related to reproducing the three-dimensional shapes of Yakjak and Gwangseok, of which it was not possible to do so through the photographs that had been collected previously. In addition, through comparison of past and present images, it was possible to measure the exact sizes as well as discover any changes that have taken place. If past photographs taken by tourists or landscape architects of cultural properties can be obtained, the three-dimensional shapes from a particular period of time can be reproduced. If this technology becomes widespread, it will increase the level of accuracy and reliability in regards to measuring the past shapes of cultural landscape properties and examining any changes to the properties.

A study for improvement of far-distance performance of a tunnel accident detection system by using an inverse perspective transformation (역 원근변환 기법을 이용한 터널 영상유고시스템의 원거리 감지 성능 향상에 관한 연구)

  • Lee, Kyu Beom;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.3
    • /
    • pp.247-262
    • /
    • 2022
  • In domestic tunnels, it is mandatory to install CCTVs in tunnels longer than 200 m which are also recommended by installation of a CCTV-based automatic accident detection system. In general, the CCTVs in the tunnel are installed at a low height as well as near by the moving vehicles due to the spatial limitation of tunnel structure, so a severe perspective effect takes place in the distance of installed CCTV and moving vehicles. Because of this effect, conventional CCTV-based accident detection systems in tunnel are known in general to be very hard to achieve the performance in detection of unexpected accidents such as stop or reversely moving vehicles, person on the road and fires, especially far from 100 m. Therefore, in this study, the region of interest is set up and a new concept of inverse perspective transformation technique is introduced. Since moving vehicles in the transformed image is enlarged proportionally to the distance from CCTV, it is possible to achieve consistency in object detection and identification of actual speed of moving vehicles in distance. To show this aspect, two datasets in the same conditions are composed with the original and the transformed images of CCTV in tunnel, respectively. A comparison of variation of appearance speed and size of moving vehicles in distance are made. Then, the performances of the object detection in distance are compared with respect to the both trained deep-learning models. As a result, the model case with the transformed images are able to achieve consistent performance in object and accident detections in distance even by 200 m.

A Study on Fast Iris Detection for Iris Recognition in Mobile Phone (휴대폰에서의 홍채인식을 위한 고속 홍채검출에 관한 연구)

  • Park Hyun-Ae;Park Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.2 s.308
    • /
    • pp.19-29
    • /
    • 2006
  • As the security of personal information is becoming more important in mobile phones, we are starting to apply iris recognition technology to these devices. In conventional iris recognition, magnified iris images are required. For that, it has been necessary to use large magnified zoom & focus lens camera to capture images, but due to the requirement about low size and cost of mobile phones, the zoom & focus lens are difficult to be used. However, with rapid developments and multimedia convergence trends in mobile phones, more and more companies have built mega-pixel cameras into their mobile phones. These devices make it possible to capture a magnified iris image without zoom & focus lens. Although facial images are captured far away from the user using a mega-pixel camera, the captured iris region possesses sufficient pixel information for iris recognition. However, in this case, the eye region should be detected for accurate iris recognition in facial images. So, we propose a new fast iris detection method, which is appropriate for mobile phones based on corneal specular reflection. To detect specular reflection robustly, we propose the theoretical background of estimating the size and brightness of specular reflection based on eye, camera and illuminator models. In addition, we use the successive On/Off scheme of the illuminator to detect the optical/motion blurring and sunlight effect on input image. Experimental results show that total processing time(detecting iris region) is on average 65ms on a Samsung SCH-S2300 (with 150MHz ARM 9 CPU) mobile phone. The rate of correct iris detection is 99% (about indoor images) and 98.5% (about outdoor images).