• Title/Summary/Keyword: 원거리

Search Result 1,231, Processing Time 0.028 seconds

Data Processing using Anisotropic Analysis for the Long-offset Marine Seismic Data of the East Sea, Korea (동해 해역 원거리 해양탄성파 탐사자료의 이방성 분석을 이용한 전산처리)

  • Joo, Yonghwan;Kim, Byoung-yeop
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2020
  • The acquisition and processing of long-offset data are essential for imaging deep geological structures in marine seismic surveys. It is challenging to derive an accurate subsurface image by employing conventional data processing to long-offset data owing to the normal moveout (NMO) stretch and non-hyperbolic moveout phenomena induced by seismic anisotropy. In 2017, the Korea Institute of Geoscience and Mineral Resources conducted a simultaneous two-dimensional multichannel streamer and ocean-bottom seismic survey using a 5.7-km streamer and an ocean-bottom seismometer to identify the deep geological structure of the Ulleung Basin. Herein, the actual geological subsurface structure was obtained via the sequential iterative updating of the velocity and anisotropic parameters of the long-offset data obtained using a multichannel streamer, and anisotropic prestack Kirchhoff migration was performed using the updated velocity and anisotropic parameters as input parameters. As a result, the reflection energy in the long-offset traces, which showed non-hyperbolic moveout owing to seismic anisotropy, was well aligned horizontally and NMO stretches were also reduced. Thus, a more precise and accurate migrated image was obtained, minimizing the distortion of reflectors and mispositioned reflection energy.

A Study for the Change and Distribution of Far Sighted and Near Sighted Astigmatism Power according to Age (연령에 따른 원·근거리 난시의 굴절력 변화에 대한 연구)

  • Joo, Seok-Hee;Park, Seong-Jong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.2
    • /
    • pp.25-36
    • /
    • 2007
  • We researched the change of astigmatism power when the fixation point moved from far distance to near distance. Astigmatism power was measured by using both eyes open-view auto-refractometer. We divided the ages between 5 and 67 years old into 12 groups with 1,598 healthy eyes(male-698 eyes and female-900 eyes) without eyes problems and experiences of eyes operations. The mean power in far astigmatism showed that with-the-rule of the total astigmatism: -0.79D, with-the-rule of the corneal astigmatism: -1.07D and against-the-rule of the residual astigmatism : -0.79D were found most respectively. The correlation between cornea astigmatism and total astigmatism was y=0.7493 x + 0.5661 r=0.6510, residual astigmatism and total astigmatism was y=0.248 x - 0.5926 r=0.2598 and corneal astigmatism and residual astigmatism was y=-0.4439 x - 0.1813 r=-0.5551 in the far distance. The mean power in near astigmatism showed that with-the-rule of total astigmatism : -0.92D, with-the-rule of corneal astigmatism : -1.12D, against-the-rule of residual astigmatism : -0.87D were found most respectively. In the near distance, The correlation between corneal astigmatism and total astigmatism was y=0.6872 x + 0.5934 r=0.6204, residual astigmatism and total astigmatism was y=0.303 x - 0.6066 r=0.3165, corneal astigmatism and residual astigmatism was y=-0.46 x - 0.0626 r=-0.5322. When the fixation point moved far distance to near distance, the differences of power according to the type of astigmatism were total astigmatism: $-0.07D{\pm}0.44D$, corneal astigmatism: $-0.04D{\pm}0.54D$ residual astigmatism:$0.01D{\pm}0.53D$. Most of astigmatism refractive power was increased except for oblique-the -astigmatism. When the fixation point moved far distance to near distance, the change of astigmatism refractive power showed total astigmatism: 540 eyes(33.7%), corneal astigmatism: 638 eyes(39.9%), residual: 841 eyes(52.6%).

  • PDF

Aided Distance Visual Acuity and Refractive Error Changes by Using Smartphone (스마트폰 사용이 원거리 교정시력과 굴절 이상 변화에 미치는 영향)

  • Kim, Bong-Hwan;Han, Sun-Hee;Shin, Young Gul;Kim, Da Yeong;Park, Jin Young;Sin, Won Chul;Yoon, Jeong Ho
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.3
    • /
    • pp.305-309
    • /
    • 2012
  • Purpose:This study was conducted to research any effect on aided distance visual acuity and refractive error changes by using smartphone at near for long term. Methods: 20($20.6{\pm}0.9$ years) young adults subjects with no ocular diseases, over 0.8 of aided distance visual acuity, normal amplitude of accommodation and normal accommodative facility agreed to participate in this study. The subjects were divided into two group, Group 1 (15 cm fixation distance) included 10 subjects and Group 2(40 cm fixation distance) included 10 subjects. Aided distance visual acuity and refractive error were measured before and after using smartphone for 30 minutes by auto-chart project (CP-1000, Dongyang, Korea), phoropter (VT-20, Dongyang, Korea), auto refractor-keratometer (MRK-3100, Huvitz, Korea). After then, the subjects looked at distance with wearing spectacles. Refractive error was measured at 5 minutes, 10 minutes, and 15 minutes later, respectively. Results: After using smartphone at 15 cm for 30 minutes, there was statistically significant reduction of aided distance visual acuity (p=0.030) and increasing myopia (p=0.001). The increased myopia was not statistically significant after 5 minutes rest (p${\geq}$0.464). However there was no statistically significant changes in aided distance visual acuity (p=0.163) and refractive error (p=0.077) after using smartphone at 40 cm for 30 minutes. Conclusions: It is recommend to keep 40 cm off the smartphone from eyes to avoid any aided distance visual acuity and refractive error changes. If smartphone is used closer than 40 cm, a rest for 5 minutes is also recommend after every 30 minutes use with smartphone to avoid any aided distance visual acuity and refractive error changes.