• Title/Summary/Keyword: 워리어플랫폼

Search Result 5, Processing Time 0.017 seconds

Comparison of the Priority of Required Capabilities of the Warrior Platform by the Types of Military Unit through AHP Analysis (AHP 분석을 통한 부대 임무유형별 워리어플랫폼 요구능력 우선순위 비교)

  • Kim, Wukki;Shin, Kyuyong;Jo, Seongsik;Baek, Seungho;Kim, Yongchul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.262-269
    • /
    • 2021
  • The Ministry of National Defense is re-establishing the role of the Army in accordance with the defense reform and is promoting the Warrior Platform, a next-generation individual combat system. The Warrior Platform project is divided into three stages and is being promoted. In the first stage, the quality and performance of individual items are improved, in the second stage, items between system development are integrated, and in the third stage, the combat capability is maximized by developing an integrated unit weapon system. In this paper, detailed sub-items for the five essential required competencies (survival, lethality, mobility, sustainability, Communication) that are considered for building an effective warrior platform are presented. We also present a plan that can be used to prepare a specific master plan for the Army's Warrior Platform project by using Analytic Hierarchy Process(AHP) and selecting the priority of the five required capabilities and detailed sub-items for different unit types. As a result of analyzing the priorities of the four types of units with different mission types, we find that there are differences for each unit. These results are expected to be used as useful reference materials for setting the future direction for the development of warrior platform.

Development of Korean Warrior Platform Architecture (한국형 워리어플랫폼 아키텍처 개발 연구)

  • Kim, Wukki;Shin, Kyuyong;Cho, Seongsik;Baek, Seungho;Kim, Yongchul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.111-117
    • /
    • 2021
  • With the rapid development of advanced science and technology including the 4th industrial revolution, the future battlefield environment is evolving at a rapid pace. In order to actively respond to issues such as reduction of military resources and shortening of service period, and to emphasize the realization of human-centered values, the Ministry of National Defense is re-establishing the role of the Army in accordance with the defense reform and is promoting the Warrior Platform, a next-generation individual combat system. In this paper, we intend to present the optimal warrior platform architecture suitable for the Korean Army by realizing the concept of future ground operations and analyzing overseas cases. We analyze the essential abilities required of individual combatants and the abilities required for each unit type, and specifically presents a plan for integration and linkage of warrior platform equipment. We also propose an efficient business promotion direction by presenting the data flow and power connection diagram between the devices that need integration and interworking.

Study on Survival Effectiveness of Intelligent System for Warrior Platform by using AWAM (지상무기효과분석모델(AWAM)을 활용한 워리어 플랫폼 지능형 조절 시스템 생존 효과도에 관한 연구)

  • Kwon, Youngjin;Kim, Taeyang;Chae, Je Wook;Kim, Juhee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.277-285
    • /
    • 2020
  • Survivability in a battle field is the most important aspect to the warriors. To analyze the survival effectiveness of warrior platform, the simulation via war-game model is an essential step in advance to the development of platform. In this study, Army Weapon effectiveness Analysis Model(AWAM) was utilized for analysis. Several weapon parameters were adjusted to apply the characteristics of warrior platform in some cases of the defense and survival system. Especially, adjusted triage possibility, probability of kill, fatality and accuracy were employed as parameters in the simulation program to evaluate the survival effectiveness of intelligent system based on the previous researches. In the future battle field or virtual space in the AWAM, the warrior platform intelligent system could react emergency treatment on time by expoiting the bio-information of man at arms. Considering the order of supply priority, special force was selected as operating troops and battle scenario without engagement was selected to measure accurate survival effectiveness. In conclusion, the survivability of defence and survival system of the warrior platform was about 1.47 times higher than that of current system.

A Study on the Relative Importance of Survivability Determinant in the Intelligent Warrior Platform by Using AHP Method (AHP 기법을 활용한 인텔리전트 생존보호체계 생존성 결정인자 상대적 중요도 결정 연구)

  • Kim, Taeyang;Kim, Juhee
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.245-254
    • /
    • 2021
  • The intelligent control algorithm based on the real-time biological monitoring system has been emphasized to enhance the survivability of the combat warrior in the future combat fields. In this study, AHP(Analytic Hierarchy Process) method was deployed to categorize the factors related to the improvement of survivability, then to determine the relative importances between them. As the details of the research process, the historical survivability determinants were firstly categorized, which was nextly judged their relative importance by the experts in the actual fileds through the survey of AHP. In this process, the consistency of the survey was investigated to filter out the error. As a result, the global priority of factors can be acquired to establish the optimized operational concepts in the intelligent warrior platform.

A Study on the Bulletproof Reliability Program (방탄물자 신뢰성 평가(BRP)에 관한 연구)

  • Gu, Seung Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.300-307
    • /
    • 2020
  • This study examines the reliability evaluation concept and procedure of bulletproof materials (BRP: Bulletproof Reliability Program). ASRP, RAM analysis tasks were utilized for the study. Based on this analysis, the concept, method, performance system, and procedure of BRP were examined. The BRP task execution procedure consists of the following four steps. First, the business (evaluation) planning stage establishes the evaluation plan every year. Second, there is a testing stage that performs the general inspection, functional test, and operational test according to the established plan. Thirdly, there is an evaluation/analysis phase to synthesize/analyze the results and to judge the appropriate grade considering the performance of bulletproof materials. Finally, the follow-up step of each group according to the result. The following criteria are suggested for BRP implementation: BRP testing capability, development of BRP evaluation method, and recognition of the importance of BRP business.