• 제목/요약/키워드: 워드 임베딩 벡터

검색결과 32건 처리시간 0.029초

임베딩 자질을 이용한 대화의 감정 분류 (Emotion Classification in Dialogues Using Embedding Features)

  • 신동원;이연수;장정선;임해창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.109-114
    • /
    • 2015
  • 대화 시스템에서 사용자 발화에 대한 감정 분석은 적절한 시스템 응답과 서비스를 제공하는데 있어 매우 중요한 정보이다. 본 연구에서는 단순한 긍, 부정이 아닌 분노, 슬픔, 공포, 기쁨 등 Plutchick의 8 분류 체계에 해당하는 상세한 감정을 분석 하는 데 있어, 임베딩 모델을 사용하여 기존의 어휘 자질을 효과적으로 사용할 수 있는 새로운 방법을 제안한다. 또한 대화 속에서 발생한 감정의 지속성을 반영하기 위하여 문장 임베딩 벡터와 문맥 임베딩 벡터를 자질로서 이용하는 방법에 대해 제안한다. 실험 결과 제안하는 임베딩 자질은 특히 내용어에 대해 기존의 어휘 자질을 대체할 수 있으며, 데이터 부족 문제를 다소 해소하여 성능 향상에 도움이 되는 것으로 나타났다.

  • PDF

감성 분류를 위한 워드 임베딩 성능 비교 (Performance Comparison of Word Embeddings for Sentiment Classification)

  • 윤혜진;구자환;김응모
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.760-763
    • /
    • 2021
  • 텍스트를 자연어 처리를 위한 모델에 적용할 수 있게 언어적인 특성을 반영해서 단어를 수치화하는 방법 중 단어를 벡터로 표현하여 나타내는 워드 임베딩은 컴퓨터가 인간의 언어를 이해하고 분석 가능한 언어 모델의 필수 요소가 되었다. Word2vec 등 다양한 워드 임베딩 기법이 제안되었고 자연어를 처리할 때에 감성 분류는 중요한 요소이지만 다양한 임베딩 기법에 따른 감성 분류 모델에 대한 성능 비교 연구는 여전히 부족한 실정이다. 본 논문에서는 Emotion-stimulus 데이터를 활용하여 7가지의 감성과 2가지의 감성을 5가지의 임베딩 기법과 3종류의 분류 모델로 감성 분류 학습을 진행하였다. 감성 분류를 위해 Logistic Regression, Decision Tree, Random Forest 모델 등과 같은 보편적으로 많이 사용하는 머신러닝 분류 모델을 사용하였으며, 각각의 결과를 훈련 정확도와 테스트 정확도로 비교하였다. 실험 결과, 7가지 감성 분류 및 2가지 감성 분류 모두 사전훈련된 Word2vec가 대체적으로 우수한 정확도 성능을 보였다.

워드 임베딩과 품사 태깅을 이용한 클래스 언어모델 연구 (Class Language Model based on Word Embedding and POS Tagging)

  • 정의석;박전규
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권7호
    • /
    • pp.315-319
    • /
    • 2016
  • 음성인식 성능 개선을 위한 언어모델의 기술적 진보는 최근 심층 신경망을 기반으로 한 접근방법으로 한 단계 더 진보한 모양새다. 그러나 연구되고 있는 심층 신경망 기반 언어모델은 대부분 음성인식 이후 리스코링 단계에서 적용할 수 있는 한계를 지닌다. 또한 대규모 어휘에 대한 심층 신경망 접근방법은 아직 시간이 필요하다고 본다. 따라서 본 논문은 심층 신경망 언어 모델의 단순화된 형태인 워드 임베딩 기술을 음성인식 후처리가 아닌 기반 N-gram모델에 바로 적용할 수 있는 접근 방법을 찾는다. 클래스 언어모델이 한 접근 방법이 될 수 있는데, 본 연구에서는 워드 임베딩을 우선 구축하고, 해당 어휘별 벡터 정보를 클러스터링하여 클래스 언어모델을 구축 방법을 제시한다. 이를 기존 어휘기반 N-gram 모델에 통합한 후, 언어모델의 성능 개선 여부를 확인한다. 클래스 언어모델의 타당성 검증을 위해 다양한 클래스 개수의 언어모델 실험과 RNN LM과의 비교 결과를 검토한 후, 모든 언어모델의 성능 개선을 보장하는 품사 부착 언어모델 생성 방법을 제안한다.

전문어의 범용 공간 매핑을 위한 비선형 벡터 정렬 방법론 (Nonlinear Vector Alignment Methodology for Mapping Domain-Specific Terminology into General Space)

  • 김준우;윤병호;김남규
    • 지능정보연구
    • /
    • 제28권2호
    • /
    • pp.127-146
    • /
    • 2022
  • 최근 워드 임베딩이 딥러닝 기반 자연어 처리를 다루는 다양한 업무에서 우수한 성능을 나타내면서, 단어, 문장, 그리고 문서 임베딩의 고도화 및 활용에 대한 연구가 활발하게 이루어지고 있다. 예를 들어 교차 언어 전이는 서로 다른 언어 간의 의미적 교환을 가능하게 하는 분야로, 임베딩 모델의 발전과 동시에 성장하고 있다. 또한 핵심 기술인 벡터 정렬(Vector Alignment)은 임베딩 기반 다양한 분석에 적용될 수 있다는 기대에 힘입어 학계의 관심이 더욱 높아지고 있다. 특히 벡터 정렬은 최근 수요가 높아지고 있는 분야간 매핑, 즉 대용량의 범용 문서로 학습된 사전학습 언어모델의 공간에 R&D, 의료, 법률 등 전문 분야의 어휘를 매핑하거나 이들 전문 분야간의 어휘를 매핑하기 위한 실마리를 제공할 수 있을 것으로 기대된다. 하지만 학계에서 주로 연구되어 온 선형 기반 벡터 정렬은 기본적으로 통계적 선형성을 가정하기 때문에, 본질적으로 상이한 형태의 벡터 공간을 기하학적으로 유사한 것으로 간주하는 가정으로 인해 정렬 과정에서 필연적인 왜곡을 야기한다는 한계를 갖는다. 본 연구에서는 이러한 한계를 극복하기 위해 데이터의 비선형성을 효과적으로 학습하는 딥러닝 기반 벡터 정렬 방법론을 제안한다. 제안 방법론은 서로 다른 공간에서 벡터로 표현된 전문어 임베딩을 범용어 임베딩 공간에 정렬하는 스킵연결 오토인코더와 회귀 모델의 순차별 학습으로 구성되며, 학습된 두 모델의 추론을 통해 전문 어휘를 범용어 공간에 정렬할 수 있다. 제안 방법론의 성능을 검증하기 위해 2011년부터 2020년까지 수행된 국가 R&D 과제 중 '보건의료' 분야의 문서 총 77,578건에 대한 실험을 수행한 결과, 제안 방법론이 기존의 선형 벡터 정렬에 비해 코사인 유사도 측면에서 우수한 성능을 나타냄을 확인하였다.

Impact of Word Embedding Methods on Performance of Sentiment Analysis with Machine Learning Techniques

  • Park, Hoyeon;Kim, Kyoung-jae
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권8호
    • /
    • pp.181-188
    • /
    • 2020
  • 본 연구에서는 다양한 워드 임베딩 기법이 감성분석의 성과에 미치는 영향을 확인하기 위한 비교연구를 제안한다. 감성분석은 자연어 처리를 사용하여 텍스트 문서에서 주관적인 정보를 식별하고 추출하는 오피니언 마이닝 기법 중 하나이며, 상품평이나 댓글의 감성을 분류하는데 사용될 수 있다. 감성은 긍정적이거나 부정적인 것으로 분류될 수 있기 때문에 일반적인 분류문제 중 하나로 생각할 수 있으며, 이의 분류를 위해서는 텍스트를 컴퓨터가 인식할 수 있는 언어로 변환하여야 한다. 따라서 단어나 문서와 같은 텍스트를 자연어 처리에서 벡터로 변형하여 진행하는데 이를 워드 임베딩이라고 한다. 워드 임베딩 기법은 Bag of Words, TF-IDF, Word2Vec 등 다양한 기법이 사용되고 있는데 지금까지 감성분석에 적합한 워드 임베딩 기법에 대한 연구는 많이 진행되지 않았다. 본 연구에서는 영화 리뷰의 감성분석을 위해 다양한 워드 임베딩 기법 중 Bag of Words, TF-IDF, Word2Vec을 사용하여 그 성과를 비교 분석한다. 분석에 사용할 연구용 데이터 셋은 텍스트 마이닝에서 많이 활용되고 있는 IMDB 데이터 셋을 사용하였다. 분석 결과, TF-IDF와 Bag of Words의 성과가 Word2Vec보다 우수한 것으로 나타났으며 TF-IDF는 Bag of Words보다 성과가 우수하였으나 그 차이가 매우 크지는 않았다.

지도학습 오토인코더를 이용한 전문어의 범용어 공간 매핑 방법론 (Domain-Specific Terminology Mapping Methodology Using Supervised Autoencoders)

  • 윤병호;김준우;김남규
    • 경영정보학연구
    • /
    • 제25권1호
    • /
    • pp.93-110
    • /
    • 2023
  • 최근 비정형 자료인 텍스트를 벡터로 변환하고 이를 통해 다양한 목적으로 방대한 양의 자연어를 분석하는 시도가 이루어지고 있다. 특히 코퍼스 규모가 제한적일 수밖에 없는 전문적인 도메인의 텍스트에 대해서도 분석 수요가 급증하면서, 해당 전문 분야의 문서를 범용 문서와 함께 분석하기 위한 연구가 활발하게 이루어지고 있다. 특정 전문어를 해당 전문어 코퍼스 외부의 일반적인 범용어와 함께 분석하기 위해서는, 전문어 임베딩 공간을 범용어 임베딩 공간과 일치시키는 것이 필요하다. 기존에는 변환 행렬 또는 매핑 함수 등을 통해 전문어 코퍼스로부터 얻은 전문어 임베딩 값을 범용어 임베딩 공간으로 변환, 일치시키려는 시도가 있었지만, 변환 행렬을 기반으로 하는 선형 변환은 국지적인 범위에서만 근사적인 변환 효과가 있다는 일반적인 선형 변환의 한계를 극복하지 못했다. 이러한 선형 변환의 한계를 극복하기 위해 최근에는 다양한 형태의 비선형적인 변환 방법이 제안되고 있으며, 본 연구에서는 오토인코더(Autoencoder)와 회귀 모델을 동시에 학습하는 종단형 학습을 통해 전문어 임베딩 공간을 범용어 임베딩 공간으로 변환하여 임베딩 공간을 일치시키는 모델을 제안한다. 실제 "보건의료" 분야의 R&D 문서에 대해 임베딩 변환 실험을 진행한 결과, 제안 방법론이 기존의 오토인코더를 활용한 방법 대비 변환 정확도 측면에서 우수한 성능을 보임을 확인하였다.

Bidirectional LSTM CRFs를 이용한 한국어 개체명 인식 (Named-entity Recognition Using Bidirectional LSTM CRFs)

  • 송치윤;양성민;강상우
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.321-323
    • /
    • 2017
  • 개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.

  • PDF

Bidirectional LSTM CRFs를 이용한 한국어 개체명 인식 (Named-entity Recognition Using Bidirectional LSTM CRFs)

  • 송치윤;양성민;강상우
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2017년도 제29회 한글및한국어정보처리학술대회
    • /
    • pp.321-323
    • /
    • 2017
  • 개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는 것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.

  • PDF

딥러닝 기법을 이용한 낚시성 기사 제목 분류에 대한 연구 (A study on classification of hooking headlines using deep learning techniques)

  • 최용석;최한나;신지혜;정창민;안정연;유채영;임채은;이공주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2015년도 제27회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.15-17
    • /
    • 2015
  • 본 논문은 낚시성 기사 제목과 비낚시성 기사 제목을 판별하기 위한 시스템을 제시한다. 서포트 벡터 머신(SVM)을 이용하여 기사 제목을 분류하며, 분류하는 기준은 딥러닝 기법중의 하나인 워드임베딩(Word Embedding), 군집화 알고리즘 중 하나인 K 평균 알고리즘(K-means)을 이용한다. 자질로서 기사 제목의 단어를 사용하였으며, 정확도가 83.78%이다. 결론적으로 낚시성 기사 제목에는 낚시를 유도하는 특별한 단어들이 존재함을 알 수 있다.

  • PDF

기술용어 분산표현을 활용한 특허문헌 분류에 관한 연구 (A Study on Patent Literature Classification Using Distributed Representation of Technical Terms)

  • 최윤수;최성필
    • 한국문헌정보학회지
    • /
    • 제53권2호
    • /
    • pp.179-199
    • /
    • 2019
  • 본 연구의 목적은 특허 문헌 분류에 가장 적합한 방법론을 발견하기 위하여 다양한 자질 추출 방법과 기계학습 및 딥러닝 모델을 살펴보고 실험을 통해 최적의 성능을 제공하는 방법론을 분석하는데 있다. 자질 추출 방법으로는 전통적인 BoW 방법과 분산표현 방식인 워드 임베딩 벡터를 비교 실험하고, 문헌 집합 구축 방식으로는 형태소 분석과 멀티그램을 이용하는 방식을 비교 검토하였다. 또한 전통적인 기계학습 모델과 딥러닝 모델을 이용하여 분류 성능을 검증하였다. 실험 결과, 분산표현 방법과 형태소 분석을 이용한 자질추출 방법을 기반으로 딥러닝 모델을 적용하였을 경우에 분류 성능이 가장 우수한 것으로 판명되었으며 섹션, 클래스, 서브클래스 분류 실험에서 전통적인 기계학습 방법에 비해 각각 5.71%, 18.84%, 21.53% 우수한 분류 성능을 보여주었다.