• 제목/요약/키워드: 워드임베딩 기법

검색결과 28건 처리시간 0.026초

빅데이터 분석을 통한 트렌드 파악 및 사용자 맞춤 도서 추천 (A Trend Analysis and Book Recommendation through Bigdata Analysis)

  • 윤경서;강승식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.363-364
    • /
    • 2023
  • 카테고리별 베스트셀러를 통해 트렌드 파악 및 사용자 맞춤형 도서 추천을 위해 카테고리별로 도서 데이터를 수집하고, 대용량 데이터인 위키피디어 데이터를 이용하여 워드임베딩 모델을 구축한다. 도서 데이터에 대한 키워드 분석 및 LDA 주제분석 기법에 의해 카테고리별 핵심 단어 분석을 통해 도서 트렌드를 파악하고, 사용자 맞춤형 도서 정보 제공 및 도서를 추천하는 기능을 구현한다.

워드 임베딩 모델을 이용한 문서 이해 및 유사문서 추천 (Document Understanding and Similar Document Recommendation Through Word Embedding Model)

  • 조정민;강승식
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2024년도 추계학술발표대회
    • /
    • pp.480-481
    • /
    • 2024
  • 문서의 내용을 쉽게 이해하기 위해서는 문서의 핵심 단어, 또는 핵심 문장을 빠르게 파악하는 것이 중요하다. 또한 유사한 문서를 참고하여 같이 읽는다면 해당 문서 내용을 파악하는 시간을 단축시켜주거나 해당 문서에 대한 이해도를 증가시킬 수 있다. 이를 위해서 wordcloud, textrank, Doc2Vec, softmax regression, cosine similarity과 같은 기법을 활용한다. 최종적으로 어떠한 문서를 입력받으면 문서의 명사를 기반으로 한 워드클라우드 시각화 및 핵심 문장 추출, 같은 카테고리를 가지는 유사한 문서를 추천해 주는 연구를 수행하였다.

워드임베딩을 활용한 복압성 요실금 관련 연구 동향에 관한 융합 연구 (A Convergence Study of the Research Trends on Stress Urinary Incontinence using Word Embedding)

  • 김준희;안선희;곽경태;원영수;유화익
    • 한국융합학회논문지
    • /
    • 제12권8호
    • /
    • pp.1-11
    • /
    • 2021
  • 본 연구의 목적은 '복압성 요실금'을 키워드로 검색된 연구들의 경향과 특성을 단어 빈도를 통해 분석하고, 워드 임베딩을 사용하여 그 관계를 모델링 하고자 하였다. 의학 서지 데이터베이스인 MEDLINE에 등록되어 있는 복압성 요실금 연구 9,868개 논문들의 초록 문자 데이터를 Python 프로그램을 이용하여 추출하였다. 그런 다음 빈도 분석을 통해 10개의 키워드를 선택하였다. 키워드 관련 단어들의 유사도는 Word2Vec 머신러닝 알고리즘으로 분석하였다. 그리고, t-SNE 기법을 사용하여 단어의 위치와 거리가 시각화하였고, 이에 따라 그룹을 분류하여 이를 분석하였다. 복압성 요실금과 관련된 연구는 1980년대 이후 빠르게 증가했다. 키워드 분석을 통해 논문 초록에서 가장 많이 사용된 키워드는 '여성', '요도', '수술'로 나타났다. Word2Vec 모델링을 통해 복압성 요실금 관련 연구에서 주요 키워드들과 가장 높은 연관성을 나타내는 단어들에는 '여성', '절박', '증상' 등이 있었다. 그리고, t-SNE 기법을 통해 키워드와 관련 단어들은 복압성 요실금의 증상, 신체 기관의 해부학적 특성, 그리고 수술적 중재를 중심으로 하는 3개의 그룹으로 분류될 수 있었다. 본 연구는 초록을 구성하는 단어들의 키워드 빈도 분석 및 워드임베딩 방식을 이용하여 복압성 요실금 관련 연구들의 동향을 살펴본 최초의 연구이다. 본 연구의 결과는 향후 연구자들이 복압성 요실금 관련 연구 분야의 주제와 방향성을 선택하는 데 있어 기초자료로 활용될 수 있을 것이다.

워드 임베딩을 이용한 질의 기반 한국어 문서 요약 분석 및 비교 (Analysis and Comparison of Query focused Korean Document Summarization using Word Embedding)

  • 허지욱
    • 한국인터넷방송통신학회논문지
    • /
    • 제19권6호
    • /
    • pp.161-167
    • /
    • 2019
  • 현재 ICT 기반의 웹 서비스 발달과 빠른 최신 기술의 보급으로 인하여 생성되는 정보의 양이 기하급수적으로 증가하고 있다. 이와 더불어 사용자들은 자신이 원하는 정보를 얻기 위해서는 많은 시간과 노력을 필요로 한다. 문서요약기법은 사용자에게 주어진 문서의 문장과 핵심 단어들을 분석하여 효과적으로 요약문을 생성해주는 기술이다. 특히 한국어로 이루어진 문서는 언어의 특성상 기존 언어 분석 기법들을 적용하기 어렵다는 문제점이 있다. 따라서 한국어의 특성을 고려한 문서요약기법에 대한 연구가 필수적이다. 본 논문은 워드 임베딩 기법인 Word2Vec과 FastText를 활용하여 질의 기반의 한국어 문서요약 기법을 제안하고 그 결과를 비교 분석한다.

개인의 감성 분석 기반 향 추천 미러 설계 (Design of a Mirror for Fragrance Recommendation based on Personal Emotion Analysis)

  • 김현지;오유수
    • 한국산업정보학회논문지
    • /
    • 제28권4호
    • /
    • pp.11-19
    • /
    • 2023
  • 본 논문에서는 사용자의 감정 분석에 따른 향을 추천하는 스마트 미러 시스템을 제안한다. 본 논문은 자연어 처리 중 임베딩 기법(CounterVectorizer와 TF-IDF 기법), 머신러닝 분류 기법 중 최적의 모델(DecisionTree, SVM, RandomForest, SGD Classifier)을 융합하여 시스템을 구축하고 그 결과를 비교한다. 실험 결과, 가장 높은 성능을 보이는 SVM과 워드 임베딩을 파이프라인 기법으로 감정 분류기 모델에 적용한다. 제안된 시스템은 Flask 웹 프레임워크를 이용하여 웹 서비스를 제공하는 개인감정 분석 기반 향 추천 미러를 구현한다. 본 논문은 Google Speech Cloud API를 이용하여 사용자의 음성을 인식하고 STT(Speech To Text)로 음성 변환된 텍스트 데이터를 사용한다. 제안된 시스템은 날씨, 습도, 위치, 명언, 시간, 일정 관리에 대한 정보를 사용자에게 제공한다.

CNN과 LSTM 및 GRU 기반 연구 논문 분류 시스템의 설계 및 구현 (Research Paper Classification Scheme based on CNN with LSTM and GRU)

  • 비스와스 딥또;강지훈;길준민
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.612-614
    • /
    • 2022
  • 최근 딥러닝 기술은 자연어처리에서 기본적이고 필수적인 기법으로 자연어처리에 필요한 복잡한 비선형 관계를 모델링할 수 있다. 본 논문에서는 LSTM(Long Short-Term Memory)과 GRU(Gated Recurrent Unit) 딥러닝 기술을 연구 논문 분류에 적용하며, CNN(Convolutional Neural Network)에 LSTM과 GRU을 각각 결합하여 특정 분야의 연구 논문을 분류하고 연구 논문을 추천하는 기법을 제안한다. 워드 임베딩과 딥러닝 기법을 연구 논문 분류에 적용하여 관심이 있는 단어와 단어 주변의 단어들 사이의 유사성과 성능을 비교 분석한다.

맞춤형 학습코스 추천 모델의 효과분석 방안 (Analysis of the effectiveness of the Recommendation Model for the Customized Learning Course)

  • 한지원;임희석
    • 한국컴퓨터교육학회 학술대회
    • /
    • 한국컴퓨터교육학회 2017년도 하계학술대회
    • /
    • pp.221-224
    • /
    • 2017
  • 본 논문은 사용자 수준에 적합한 맞춤형 학습코스를 추천하여 학습효과를 향상시킬 수 있는 추천모델을 개발하고, 효과분석을 위한 방안을 제시한다. 학습자 개개인의 학습수준이나 학습내용 등에 따라 적합한 학습주제를 선정하여 제공하는 것은 중요하나, 일반적인 추천은 전문가 그룹을 활용한 사람중심의 추천으로 시간이 오래 걸리는 등 자원의 비효율적 한계점[1]을 가지고 있다. 이를 극복하기 위해, TF-IDF를 이용해 단어별 가중치를 계산하여 고빈도 단어를 추출하여 벡터 공간에 배치시키고, Cosine Similarity 기법을 이용해 벡터간의 유사도를 측정하였다. 학습자 프로파일을 분석하고, 학습스킬간의 연관성을 고려하여 맞춤형 학습코스를 추천하기 위해, 워드 임베딩 기법을 적용하였고, 이를 위해 오픈소스 Gensim[2]을 이용하였다. 맞춤형 학습코스 추천 모델의 효과를 분석하기 위한 실험을 설계하고 평가 문항지를 개발하였다.

  • PDF

GloVe와 최대 엔트로피 모델을 이용한 한국어 문장 분류 시스템 (Korean Sentence Classification System Using GloVe and Maximum Entropy Model)

  • 박일남;최동현;신명철;김응균
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.522-526
    • /
    • 2018
  • 본 연구는 수많은 챗봇이 생성될 수 있는 챗봇 빌더 시스템에서 저비용 컴퓨팅 파워에서도 구동 가능한 가벼운 문장 분류 시스템을 제안하며, 미등록어 처리를 위해 워드 임베딩 기법인 GloVe를 이용하여 문장 벡터를 생성하고 이를 추가 자질로 사용하는 방법을 소개한다. 제안한 방법으로 자체 구축한 테스트 말뭉치를 이용하여 성능을 평가해본 결과 최대 93.06% 성능을 보였으며, 자체 보유한 CNN 모델과의 비교 평가 결과 성능은 2.5% 낮지만, 모델 학습 속도는 25배, 학습 시 메모리 사용량은 6배, 생성된 모델 파일 크기는 302배나 효율성 있음을 보였다.

  • PDF

계층 구조 어텐션 매커니즘에 기반한 CNN-RNN을 이용한 한국어 화행 분석 시스템 (Hierarchical attention based CNN-RNN networks for The Korean Speech-Act Analysis)

  • 서민영;홍태석;김주애;고영중;서정연
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.243-246
    • /
    • 2018
  • 최근 사용자 발화를 이해하고 그에 맞는 피드백을 생성할 수 있는 대화 시스템의 중요성이 증가하고 있다. 따라서 사용자 의도를 파악하기 위한 화행 분석은 대화 시스템의 필수적인 요소이다. 최근 많이 연구되는 심층 학습 기법은 모델이 데이터로부터 자질들을 스스로 추출한다는 장점이 있다. 발화 자체의 연속성과 화자간 상호 작용을 포착하기 위하여 CNN에 RNN을 결합한 CNN-RNN을 제안한다. 본 논문에서 제안한 계층 구조 어텐션 매커니즘 기반 CNN-RNN을 효과적으로 적용한 결과 워드 임베딩을 추가한 조건에서 가장 높은 성능인 91.72% 정확도를 얻었다.

  • PDF

다양한 앙상블 알고리즘을 이용한 한국어 의존 구문 분석 (Korean Dependency Parsing Using Various Ensemble Models)

  • 조경철;김주완;김균엽;박성진;강상우
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.543-545
    • /
    • 2019
  • 본 논문은 최신 한국어 의존 구문 분석 모델(Korean dependency parsing model)들과 다양한 앙상블 모델(ensemble model)들을 결합하여 그 성능을 분석한다. 단어 표현은 미리 학습된 워드 임베딩 모델(word embedding model)과 ELMo(Embedding from Language Model), Bert(Bidirectional Encoder Representations from Transformer) 그리고 다양한 추가 자질들을 사용한다. 또한 사용된 의존 구문 분석 모델로는 Stack Pointer Network Model, Deep Biaffine Attention Parser와 Left to Right Pointer Parser를 이용한다. 최종적으로 각 모델의 분석 결과를 앙상블 모델인 Bagging 기법과 XGBoost(Extreme Gradient Boosting) 이용하여 최적의 모델을 제안한다.

  • PDF