카테고리별 베스트셀러를 통해 트렌드 파악 및 사용자 맞춤형 도서 추천을 위해 카테고리별로 도서 데이터를 수집하고, 대용량 데이터인 위키피디어 데이터를 이용하여 워드임베딩 모델을 구축한다. 도서 데이터에 대한 키워드 분석 및 LDA 주제분석 기법에 의해 카테고리별 핵심 단어 분석을 통해 도서 트렌드를 파악하고, 사용자 맞춤형 도서 정보 제공 및 도서를 추천하는 기능을 구현한다.
문서의 내용을 쉽게 이해하기 위해서는 문서의 핵심 단어, 또는 핵심 문장을 빠르게 파악하는 것이 중요하다. 또한 유사한 문서를 참고하여 같이 읽는다면 해당 문서 내용을 파악하는 시간을 단축시켜주거나 해당 문서에 대한 이해도를 증가시킬 수 있다. 이를 위해서 wordcloud, textrank, Doc2Vec, softmax regression, cosine similarity과 같은 기법을 활용한다. 최종적으로 어떠한 문서를 입력받으면 문서의 명사를 기반으로 한 워드클라우드 시각화 및 핵심 문장 추출, 같은 카테고리를 가지는 유사한 문서를 추천해 주는 연구를 수행하였다.
본 연구의 목적은 '복압성 요실금'을 키워드로 검색된 연구들의 경향과 특성을 단어 빈도를 통해 분석하고, 워드 임베딩을 사용하여 그 관계를 모델링 하고자 하였다. 의학 서지 데이터베이스인 MEDLINE에 등록되어 있는 복압성 요실금 연구 9,868개 논문들의 초록 문자 데이터를 Python 프로그램을 이용하여 추출하였다. 그런 다음 빈도 분석을 통해 10개의 키워드를 선택하였다. 키워드 관련 단어들의 유사도는 Word2Vec 머신러닝 알고리즘으로 분석하였다. 그리고, t-SNE 기법을 사용하여 단어의 위치와 거리가 시각화하였고, 이에 따라 그룹을 분류하여 이를 분석하였다. 복압성 요실금과 관련된 연구는 1980년대 이후 빠르게 증가했다. 키워드 분석을 통해 논문 초록에서 가장 많이 사용된 키워드는 '여성', '요도', '수술'로 나타났다. Word2Vec 모델링을 통해 복압성 요실금 관련 연구에서 주요 키워드들과 가장 높은 연관성을 나타내는 단어들에는 '여성', '절박', '증상' 등이 있었다. 그리고, t-SNE 기법을 통해 키워드와 관련 단어들은 복압성 요실금의 증상, 신체 기관의 해부학적 특성, 그리고 수술적 중재를 중심으로 하는 3개의 그룹으로 분류될 수 있었다. 본 연구는 초록을 구성하는 단어들의 키워드 빈도 분석 및 워드임베딩 방식을 이용하여 복압성 요실금 관련 연구들의 동향을 살펴본 최초의 연구이다. 본 연구의 결과는 향후 연구자들이 복압성 요실금 관련 연구 분야의 주제와 방향성을 선택하는 데 있어 기초자료로 활용될 수 있을 것이다.
현재 ICT 기반의 웹 서비스 발달과 빠른 최신 기술의 보급으로 인하여 생성되는 정보의 양이 기하급수적으로 증가하고 있다. 이와 더불어 사용자들은 자신이 원하는 정보를 얻기 위해서는 많은 시간과 노력을 필요로 한다. 문서요약기법은 사용자에게 주어진 문서의 문장과 핵심 단어들을 분석하여 효과적으로 요약문을 생성해주는 기술이다. 특히 한국어로 이루어진 문서는 언어의 특성상 기존 언어 분석 기법들을 적용하기 어렵다는 문제점이 있다. 따라서 한국어의 특성을 고려한 문서요약기법에 대한 연구가 필수적이다. 본 논문은 워드 임베딩 기법인 Word2Vec과 FastText를 활용하여 질의 기반의 한국어 문서요약 기법을 제안하고 그 결과를 비교 분석한다.
본 논문에서는 사용자의 감정 분석에 따른 향을 추천하는 스마트 미러 시스템을 제안한다. 본 논문은 자연어 처리 중 임베딩 기법(CounterVectorizer와 TF-IDF 기법), 머신러닝 분류 기법 중 최적의 모델(DecisionTree, SVM, RandomForest, SGD Classifier)을 융합하여 시스템을 구축하고 그 결과를 비교한다. 실험 결과, 가장 높은 성능을 보이는 SVM과 워드 임베딩을 파이프라인 기법으로 감정 분류기 모델에 적용한다. 제안된 시스템은 Flask 웹 프레임워크를 이용하여 웹 서비스를 제공하는 개인감정 분석 기반 향 추천 미러를 구현한다. 본 논문은 Google Speech Cloud API를 이용하여 사용자의 음성을 인식하고 STT(Speech To Text)로 음성 변환된 텍스트 데이터를 사용한다. 제안된 시스템은 날씨, 습도, 위치, 명언, 시간, 일정 관리에 대한 정보를 사용자에게 제공한다.
최근 딥러닝 기술은 자연어처리에서 기본적이고 필수적인 기법으로 자연어처리에 필요한 복잡한 비선형 관계를 모델링할 수 있다. 본 논문에서는 LSTM(Long Short-Term Memory)과 GRU(Gated Recurrent Unit) 딥러닝 기술을 연구 논문 분류에 적용하며, CNN(Convolutional Neural Network)에 LSTM과 GRU을 각각 결합하여 특정 분야의 연구 논문을 분류하고 연구 논문을 추천하는 기법을 제안한다. 워드 임베딩과 딥러닝 기법을 연구 논문 분류에 적용하여 관심이 있는 단어와 단어 주변의 단어들 사이의 유사성과 성능을 비교 분석한다.
본 논문은 사용자 수준에 적합한 맞춤형 학습코스를 추천하여 학습효과를 향상시킬 수 있는 추천모델을 개발하고, 효과분석을 위한 방안을 제시한다. 학습자 개개인의 학습수준이나 학습내용 등에 따라 적합한 학습주제를 선정하여 제공하는 것은 중요하나, 일반적인 추천은 전문가 그룹을 활용한 사람중심의 추천으로 시간이 오래 걸리는 등 자원의 비효율적 한계점[1]을 가지고 있다. 이를 극복하기 위해, TF-IDF를 이용해 단어별 가중치를 계산하여 고빈도 단어를 추출하여 벡터 공간에 배치시키고, Cosine Similarity 기법을 이용해 벡터간의 유사도를 측정하였다. 학습자 프로파일을 분석하고, 학습스킬간의 연관성을 고려하여 맞춤형 학습코스를 추천하기 위해, 워드 임베딩 기법을 적용하였고, 이를 위해 오픈소스 Gensim[2]을 이용하였다. 맞춤형 학습코스 추천 모델의 효과를 분석하기 위한 실험을 설계하고 평가 문항지를 개발하였다.
본 연구는 수많은 챗봇이 생성될 수 있는 챗봇 빌더 시스템에서 저비용 컴퓨팅 파워에서도 구동 가능한 가벼운 문장 분류 시스템을 제안하며, 미등록어 처리를 위해 워드 임베딩 기법인 GloVe를 이용하여 문장 벡터를 생성하고 이를 추가 자질로 사용하는 방법을 소개한다. 제안한 방법으로 자체 구축한 테스트 말뭉치를 이용하여 성능을 평가해본 결과 최대 93.06% 성능을 보였으며, 자체 보유한 CNN 모델과의 비교 평가 결과 성능은 2.5% 낮지만, 모델 학습 속도는 25배, 학습 시 메모리 사용량은 6배, 생성된 모델 파일 크기는 302배나 효율성 있음을 보였다.
최근 사용자 발화를 이해하고 그에 맞는 피드백을 생성할 수 있는 대화 시스템의 중요성이 증가하고 있다. 따라서 사용자 의도를 파악하기 위한 화행 분석은 대화 시스템의 필수적인 요소이다. 최근 많이 연구되는 심층 학습 기법은 모델이 데이터로부터 자질들을 스스로 추출한다는 장점이 있다. 발화 자체의 연속성과 화자간 상호 작용을 포착하기 위하여 CNN에 RNN을 결합한 CNN-RNN을 제안한다. 본 논문에서 제안한 계층 구조 어텐션 매커니즘 기반 CNN-RNN을 효과적으로 적용한 결과 워드 임베딩을 추가한 조건에서 가장 높은 성능인 91.72% 정확도를 얻었다.
본 논문은 최신 한국어 의존 구문 분석 모델(Korean dependency parsing model)들과 다양한 앙상블 모델(ensemble model)들을 결합하여 그 성능을 분석한다. 단어 표현은 미리 학습된 워드 임베딩 모델(word embedding model)과 ELMo(Embedding from Language Model), Bert(Bidirectional Encoder Representations from Transformer) 그리고 다양한 추가 자질들을 사용한다. 또한 사용된 의존 구문 분석 모델로는 Stack Pointer Network Model, Deep Biaffine Attention Parser와 Left to Right Pointer Parser를 이용한다. 최종적으로 각 모델의 분석 결과를 앙상블 모델인 Bagging 기법과 XGBoost(Extreme Gradient Boosting) 이용하여 최적의 모델을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.