• 제목/요약/키워드: 움직임 객체 검출

검색결과 81건 처리시간 0.025초

칼라/움직임 정보를 이용한 MPEG-4 비디오 객체 분할 설계 (A design of MPEG-4 video object segmentation using color/motion information)

  • 김준기;이호석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.206-208
    • /
    • 2000
  • 본 논문은 칼라 정보와 움직임 정보를 이용한 객체 분할 기법의 설계에 대하여 소개한다. 객체 분할 알고리즘은 L*u*v 공간의 칼라 특성과 움직임 특성을 결합하여 설계하였다. 즉 공간 분할은 mean shift 칼라 클러스터링 알고리즘(color clustering algorithm)을 사용하여 중심 칼라 영역에 따라 동일한 칼라 지역으로 통합한다. 시간 분할은 움직임 검출을 위하여 affine six parameter 움직임 모델과 optical flow equation를 이용하여 움직임이 발생한 부분을 검출한다. 다음에 공간 분할과 시간 분할에 따라 결과를 통합하고 MAD(mean absolute difference)를 사용하여 객체를 추출하는 알고리즘을 설계하였다.

  • PDF

이동 객체 추적을 위한 움직임 영역 검출 (Moving area detection for moving object tracking)

  • 오명관;최동진;전병민
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2003년도 추계종합학술대회 논문집
    • /
    • pp.281-284
    • /
    • 2003
  • 본 연구에서는 이동 객체 추적 시스템의 전처리 과정으로 움직임 영역을 검출하는 방법을 제안한다. 연속되는 영상으로부터 시간적으로 차이가 있는 두 개의 프레임을 얻은 후 이들의 이진 차영상을 구함으로서 움직임 영역을 검출한다. 차영상을 이용하는 경우 이전 프레임에서의 객체 영역과 현재 프레임에서의 객체 영역이 모두 검출된다. 추적 시스템에서는 카메라의 이동에 따라 배경이 변화되기 때문에 어느 영역이 객체의 현재 위치인지를 결정하는 방법이 필요하다. 이를 위해 본 연구에서는 현재 프레임의 이진 에지영상을 구하고 이것을 차영상과 논리적인 AND 연산을 수행한다. 실험 결과 이동 객체의 움직임 영역을 정확히 검출할 수 있음을 확인할 수 있었다.

  • PDF

클라우지우스 엔트로피와 적응적 가우시안 혼합 모델을 이용한 움직임 객체 검출 (Moving Object Detection using Clausius Entropy and Adaptive Gaussian Mixture Model)

  • 박종현;이귀상;또안;조완현;박순영
    • 전자공학회논문지CI
    • /
    • 제47권1호
    • /
    • pp.22-29
    • /
    • 2010
  • 비디오 시퀀스에서 움직임 있는 객체의 실시간 검출 및 추적은 스마트 감시 시스템에서 매우 중요한 요소로 분류되고 있다. 본 논문에서 우리는 움직임이 있는 객체의 검출을 위해 클라우지우스 엔트로피와 적응적 가우시안 혼합모델을 사용한 객체 검출 방법을 제안한다. 먼저, 엔트로피의 증가는 일반적으로 불안전한 조건에서 많은 엔트로피의 변화가 발생한 경우 복잡성 및 객체의 움직임이 증가함을 의미한다. 만약 순간적으로 엔트로피 변화가 큰 화소는 움직임 객체에 속한다고 고려하여 움직임 분할 특성을 적용한다. 따라서 우리는 먼저 클라우지우스 엔트로피 이론을 적용하여 엔트로피에 대한 에너지 변화량을 dense 맵으로 변환한다. 두 번째로 우리는 움직임 객체를 검출하기 위해 적응적 가우시안 혼합 모델을 적용하였다. 실험 결과에서 제안된 방법이 효율적으로 움직임이 있는 객체를 검출할 수 있었다.

멧돼지 감시 시스템을 위한 객체 검출 방법 (Object Detection Method for The Wild Pig Surveillance System)

  • 김동우;송영준;김애경;홍유식;안재형
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권5호
    • /
    • pp.229-235
    • /
    • 2010
  • 본 논문은 실시간 감시 카메라 시스템에서 움직임 검출 효율을 높일 수 있는 방법을 제안하였다. 기존 방법인 차영상에 의한 방법과 배경 영상에 의한 객체 추적 방법은 외부에서 촬영되는 동영상에서의 움직이고 있는 객체를 검출하는 것이 상당히 어려운 일이다. 제안 방법은 배경 영상을 바로 이전 프레임과의 차를 구하여 급격하게 움직임이 검출되지 않으면 기존 배경 영상을 유지하고 해당 영역에서 움직임 객체가 사려졌을 때를 감지하여 배경 영상을 갱신하는 방법을 제안하였다. 멧돼지와 사람을 판단하기 위해 검출 영역 안에 있는 움직임 객체 각각에 박스로 표시하였다. 실시간 영상으로 시뮬레이션 한 결과 기존 방법보다 우수한 결과를 보여주었다.

내용 기반 코딩을 위한 강력한 에지 연결에 의한 움직임 객체 자동 분할 (Automatic Moving Object Segmentation using Robust Edge Linking for Content-based Coding)

  • 김준기;이호석
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제31권5_6호
    • /
    • pp.305-320
    • /
    • 2004
  • 움직임 객체 분할은 내용 기반 응용을 위하여 핵심적인 것이다. 다중 프레임 차이 누적은 프레임 차이 정보를 누적하여 움직임 에지를 검출한다. 검출된 움직임 에지와 분할될 현재 프레임의 에지를 비교하여 움직임 객체 에지를 생성한다. 그러나 실시간 카메라로 입력되는 연속 동영상의 움직임 객체 에지에는 객체 색과 배경 색의 일치 혹은 객체의 움직임 감소로 말미암아 에지 단락이 발생한다. 에지 단락은 매우 심각한 문제로서 움직임 객체의 영상 품질을 심하게 손상시키는 경우도 있다. 본 연구에서는 강건하고 포괄적인 에지 연결 알고리즘을 개발하여 이 문제를 해결하였다. 또한 본 연구에서는 자동 움직임 객체 분할 알고리즘을 개발하여 분명하고 깨끗한 모양의 움직임 객체를 자동으로 분할하였다. 개발한 알고리즘은 CIF 영상을 초당 30 프레임 이상 처리할 수 있다. 본 논문에서 개발한 알고리즘은 MPEG-4 내용 기반 코딩 시스템에 적용할 수 있다.

계층적 프레임 탐색을 이용한 MPEG 비디오 분할 (MPEG Video Segmentation using Hierarchical Frame Search)

  • 김주민;최영우;정규식
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.215-218
    • /
    • 2000
  • 디지털 비디오 데이터를 효율적으로 브라우징 하는데 필요한 비디오 분할에 관한 연구가 활발하게 진행되고 있다. 본 연구에서는 비디오 데이터를 Shot단위로 분할하고, Shot내부에서 카메라 동작과 객체 움직임 분석을 이용한 sub-shot으로 분할하고자 한다. 연구 방법으로는 I-frame의 DC 영상을 이용하여 픽쳐그룹을 Shot(장면이 바뀐 경우), Move(카메라 동작,객체움직임), Static(영상의 변화가 거의 없는 경우)로 세분화하고 해당 픽쳐 그룹의 P, B-frame을 검사하여 정확한 컷 발생 위치, 디졸브, 카메라동작, 객체 움직임을 검출하게 된다. 픽쳐그룹 분류에서 정확성을 높이기 위해 계층적 신경망과 다중 특징을 이용한다. 정확한 컷 발생위치 검출하기 위해서 P, B프레임의 메크로블럭 타입을 이용한 통계적 방법을 이용하고, 디졸브, 카메라 동작, 객체 움직임을 검출하기 위해서 P, B-frame의 메크로블럭 타입과 움직임 벡터를 이용한 신경망으로 검출한다. 본 연구에서는 계층적 탐색을 이용하여 시간을 단축할 수 있고, 계층적 신경망과 다중 특징을 이용하여 픽쳐 그룹을 세분화 할 수 있고, 메크로 블록 타입과 통계적 방법을 이용하여 정확한 컷 검출을 할수 있고, 신경망을 이용하여 디졸브, 카메라 동작, 객체움직임을 검출 할 수 있음을 확인한다.

  • PDF

흡연자 검출을 위한 새로운 방법 (New Scheme for Smoker Detection)

  • 이종석;이현재;이동규;오승준
    • 한국통신학회논문지
    • /
    • 제41권9호
    • /
    • pp.1120-1131
    • /
    • 2016
  • 본 논문은 흡연으로 인한 화재사고 방지를 위해, 비디오 영상에서 흡연자를 검출하는 알고리즘을 제안한다. 흡연자의 행동을 인식하기 위해 행동 인식 기법의 계층적 방법 중 서술 기반 접근 방법을 기반으로 제안하는 알고리즘은 배경 영역 분리, 객체 검출, 이벤트 탐지, 이벤트 판단 과정으로 구성된다. 배경 영역 분리 과정으로 학습률이 다른 두 개의 가우시안 혼합 모델을 이용하여 입력 영상으로부터 고속 움직임 전경, 저속 움직임 전경 영상을 생성하고, 저속움직임 전경 영상을 chain-rule 기반 외곽선 검출 알고리즘을 통하여 객체의 위치를 추출해낸다. 위치 정보를 기반으로 흡연자의 세 가지 특징인 얼굴, 연기, 손의 움직임을 이벤트 탐지 과정에서 검출한다. Haar-like feature를 이용하여 얼굴을 검출하며, 고속 움직임 전경에서 연기의 발생 빈도수와 방향성을 반영하여 연기를 검출한다. 움직임 추정을 통해 반복적인 손의 움직임을 검출한다. 일정 구간의 비디오 시퀀스 내 객체들에 대하여, 검출된 특징들의 서술적 관계를 반영하여 각각의 객체가 흡연자인지 판단한다. 제안하는 방법은 실시간으로 여러 다른 객체들 사이에서 강인하게 흡연자를 검출한다.

레벨셑 방법을 이용한 비디오 객체 추출 (Video Object Extraction using Level Set Method)

  • 이광연;김성대
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 제13회 신호처리 합동 학술대회 논문집
    • /
    • pp.337-340
    • /
    • 2000
  • 비디오객체 추출 기법은 MPEG-4 및 MPEG-7의 응용을 목표로 최근 활발하게 연구되고 있다. 이들 연구는 객체 추출의 전체적인 구조와 정확한 윤곽선 검출 알고리즘의 개발에 초점을 맞추고 있으며 제한적인 조건하에서 만족할 만한 성능을 내고 있다 그러나, 카메라 움직임, 객체의 빠른 움직임, 비강체 운동 등 보다 일반적인 상황에서는 객체 추출의 안정성이 떨어진다. 본 논문에서는 객체 추출의 안정성을 높이기 위해 칼라, 움직임 정보 등의 특징정보(feature)가 균일한 영역으로 사전분할하고, 분할된 균일영역을 추적하는 알고리즘을 제안한다. 추적된 균일 영역간의 경계는 각 영역의 통계적 분포와 영역경계의 윤곽선으로 정의된 에너지를 레벨셑 방법으로 최소화함으로 조정된다.

  • PDF

자동차 주행 환경에서 모델링된 움직임 필드를 이용한 객체 영역검출 (Detection of Object Area by Modeling of Motion Field in Automobile Driving Environment)

  • 이동희;이강;강동욱;정경훈
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 하계학술대회
    • /
    • pp.5-7
    • /
    • 2018
  • 지능형 자동차는 역사가 깊은 연구 분야이다. 과거에는 낮은 하드웨어 성능에 맞추기 위하여 복잡한 알고리즘을 경량화하면서 성능을 유지하고자 하는 제한적인 연구들이 주로 이루어졌으나, 최근 하드웨어 성능이 높아지면서는 다양한 알고리즘 적용이 가능해졌기 때문에 매우 활발하게 연구되는 분야가 되었다. 본 논문은 차량의 주행 특성을 반영한 움직임 벡터 필드 모델링을 수행하고, 이 모델 값과 실제 추정된 움직임 벡터와의 차이를 이용해서 차량의 후보 영역을 검출하는 객체 영역 검출 알고리즘을 제안한다. 제안하는 움직임 벡터 필드 모델링 기법은 기존의 움직임 벡터 추정 기법에 비해 계산량이 적고, 음영 영역이나 밝기가 포화된 영역에서도 움직임 필드를 모델링해낼 수 있는 장점이 있어서 상용화된 블랙박스에 적용이 가능하다.

  • PDF

비디오 시퀸스에서 움직임 객체 분할과 VOP 추출을 위한 강력한 알고리즘 (A Robust Algorithm for Moving Object Segmentation and VOP Extraction in Video Sequences)

  • 김준기;이호석
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제8권4호
    • /
    • pp.430-441
    • /
    • 2002
  • 비디오 객체 분할은 MPEG-4와 같은 객체기반 비디오 코딩을 위한 중요한 구성 요소이다. 본논문은 비디오 시퀸스에서 움직임 객체 분할을 위한 새로운 알고리즘과 VOP(Video Object Plane)추출 방법을 소개한다. 본 논문의 핵심은 시간적으로 변하는 움직임 객체 에지와 공간적 객체 에지 검출 결과를 효율적으로 조합하여 정확한 객체 경계를 추출하는 것이다. 이후 추출된 에지를 통하여 VOP를 생성한다. 본 알고리즘은 첫 번째 프레임을 기준영상으로 설정한 후 두 개의 연속된 프레임 사이의 움직임 픽셀 차이 값으로부터 시작된다. 차이영상을 추출한 후 차이영상에 Canny 에지 연산과 수리형태 녹임 연산(erosion)을 적용하고, 다음 프레임의 영상에 Canny 에지 연산과 수리형태 녹임 연산을 적용하여 두 프레임 사이의 에지 비교를 통하여 정확한 움직임 객체 경계를 추출한다. 이 과정에서 수리형태학 녹임 연산은 잘못된 객체 에지의 검출을 방지하는 작용을 한다. 두 영상 사이의 정확한 움직임 객체 에지(moving object edge)는 에지 크기를 조절하여 생성한다. 본 알고리즘은 픽셀 범위까지 고려한 정화한 객체의 경계를 얻음으로서 매우 쉬운 구현과 빠른 객체 추출을 보였다.