• 제목/요약/키워드: 움직이는 객체

검색결과 198건 처리시간 0.026초

계층적 행정 구역에 기반한 효율적인 위치 정보 표현 방식 (An Efficient Location Encoding Method Based on Hierarchical Administrative District)

  • 이상윤;박상현;김우철;이동원
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권3호
    • /
    • pp.299-309
    • /
    • 2006
  • 최근 이동 통신 기술의 급속한 발달로 인해 휴대폰, PDA등과 같은 휴대용 단말기의 사용이 보편화 되고 있다. 따라서 무선 이동기기의 시간에 따른 공간적인 위치 정보를 활용하여 다양하고 빠른 서비스를 제공하기 위해서 위치 기반 서비스(Location-Based Service)에 관한 많은 연구가 진행되고 있다. 효율적인 위치 기반 서비스의 제공을 위하여 시간에 따라 지속적으로 변하는 이동 객체의 대용량 시공간 정보를 신속하게 저장, 관리, 검색할 수 있는 인덱싱 및 질의 처리 기술이 수반되어야 한다. 본 논문에서는 대용량 이동 객체 데이타베이스를 대상으로 효율적인 인덱스 구축을 위한 위치 정보의 압축 표현 방식에 대하여 논한다. 이를 위해 본 논문에서는 기존의 주요 연구에서 (x,y) 형태의 2차원 공간 좌표로 표현되던 이동 객체의 위치 정보를 계층적 구조를 갖는 행정 구역과 도로 상의 위치를 이용하여 1차원의 위치 정보로 압축 표현하는 방식을 제안한다. 이를 이용해 도로를 따라 움직이는 이동 객체에 대해 위치 정보의 손실 없이 효율적인 위치 기반 서비스를 제공할 수 있다 또, 일정 공간 내의 객체 분포를 필요로 하는 교통 상황 파악, 근사적(approximate) 공간 정보를 필요로 하는 사람 차량 위치 추적 등에 유용하게 사용할 수 있다.

시공간 정합을 이용한 비디오 시퀀스에서의 가려진 객체의 복원 (Completion of Occluded Objects in a Video Sequence using Spatio-Temporal Matching)

  • 허미경;문재경;박순용
    • 정보처리학회논문지B
    • /
    • 제14B권5호
    • /
    • pp.351-360
    • /
    • 2007
  • 비디오 복원(video completion) 기술은 비디오 영상에서 색상 정보가 없는 픽셀에 적절한 색을 채워 영상을 복원하는 기술이다. 본 논문에서는 움직이는 물체가 서로 교차하는 비디오 영상에서 원하지 않는 물체를 제거하고 이때 발생한 영상 홀(image hole)을 채우는 비디오 복원 기술을 제안한다. 움직이는 카메라에서 획득한 비디오 영상에서 이동하는 두 물체 중 카메라와 가까운 물체를 제거함으로써 가려진 이동물체와 배경에 홀이 발생하게 되고, 이 홀온 다른 프레임들의 정보를 이용하여 채움으로써 새로운 비디오를 생성한다. 입력 영상의 모든 프레임에 대해 각 물체의 중심을 추정하여 물체의 중심을 기준으로 시-공간 볼륨(spatio-temporal volume)을 생성하고, 복셀 매칭(voxel matching)을 통한 시간적 탐색(temporal search)을 수행한 후 두 물체를 분리한다. 가리는 물체 영역으로 판단된 부분을 삭제하고 공간적 탐색(spatial search) 방법을 이용하여 홀을 채워 가려짐이 있는 이동 물체 및 배경을 복원한다. 복원된 영상에서 블렌딩을 통해 솔기(seam)를 제거한다. 비디오카메라로 획득한 두 실영상을 이용하여 실험을 수행한 결과 가려진 물체를 복원한 새로운 비디오 영상을 생성할 수 있었다.

LiDAR 신호처리 플랫폼을 위한 프레임 간 마스킹 기법 기반 유효 데이터 전송량 경량화 기법 (Semantic Depth Data Transmission Reduction Techniques using Frame-to-Frame Masking Method for Light-weighted LiDAR Signal Processing Platform)

  • 정태원;박대진
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1859-1867
    • /
    • 2021
  • 자율주행차량을 위해 다수의 LiDAR 센서가 차량에 탑재되고 있으며, 다수의 LiDAR 센서가 탑재됨에 따라 이를 전처리해줄 시스템이 요구되었다. 이러한 전처리 시스템을 거쳐 메인 프로세서에 센서의 데이터를 전달하거나 이를 처리할 경우 막대한 데이터양에 의해 전송 네트워크에 부하를 야기하고 이를 처리하는 메인 프로세서에도 상당한 부하를 야기하게 된다. 이러한 부하를 최소화하고자 LiDAR 센서의 데이터 중 프레임 간 데이터 비교를 통해 의미 있는 데이터만을 전송하고자 한다. 움직이는 객체가 없는 정적인 실험 환경과 센서의 시야각 내에서 사람이 움직이는 동적 실험환경에서 최대 4대의 LiDAR 센서의 데이터를 처리하였을 때, 정적 실험 환경일 경우 232,104 bytes에서 26,110 bytes로 약 89.5% 데이터 전송량을 줄일 수 있었으며, 동적 실험 환경일 경우 29,179 bytes로 약 88.1%의 데이터 전송량을 감축할 수 있었다.

공간 네트워크 상의 이동객체를 위한 시그니처 기반의 궤적 색인구조 (Trajectory Index Structure based on Signatures for Moving Objects on a Spatial Network)

  • 김영진;김영창;장재우;심춘보
    • 한국공간정보시스템학회 논문지
    • /
    • 제10권3호
    • /
    • pp.1-18
    • /
    • 2008
  • 공간 네트워크 상을 움직이는 많은 이동객체들의 궤적 분석을 통해서 많은 정보를 얻을 수 있다. 이를 위해서, 궤적을 효과적으로 검색 할 수 있는 궤적 기반 색인 구조가 필요하다. 하지만 도로와 같은 공간 네트워크상의 궤적 기반 색인 구조에 대한 연구는 FNR-트리나 MON-트리를 제외하고는 연구가 많이 부족한 실정이다. 또한, FNR-트리나 MON-트리는 에지를 지난 이동객체의 이동정보인 세그먼트만을 저장할 뿐 전체 궤적을 유지하지 못하며, 궤적 질의에 대해 비효율적이다. 따라서 본 논문에서는 공간 네트워크상의 이동객체를 위한 시그니처 기반의 궤적 색인 구조인 SigMO-트리를 제안한다. 이를 위해, 이동객체를 공간과 시간 특성으로 분류하고, 전체 궤적을 유지함으로써 영역질의와 궤적질의를 동시에 처리할 수 있는 색인 구조를 설계한다. 아울러, 사용자 질의를 시공간영역 내 궤적 질의, 시간영역 내 유사궤적 질의로 분류하고, 이들을 처리 하기 위한 질의 처리 알고리즘을 제안한다. 각 질의처리 알고리즘은 효율적인 검색을 위하여 시그니처 파일 기법을 이용하여 궤적을 검색한다. 마지막으로 성능평가를 통해 본 논문에서 제안한 궤적 기반 색인 구조가 기존의 색인구조인 FNR-트리, MON-트리보다 성능이 우수함을 보인다.

  • PDF

다중 객체 추적 알고리즘을 이용한 가공품 흐름 정보 기반 생산 실적 데이터 자동 수집 (Automatic Collection of Production Performance Data Based on Multi-Object Tracking Algorithms)

  • 임현아;오서정;손형준;오요셉
    • 한국전자거래학회지
    • /
    • 제27권2호
    • /
    • pp.205-218
    • /
    • 2022
  • 최근 제조업에서의 디지털 전환이 가속화되고 있다. 이에 따라 사물인터넷(internet of things: IoT) 기반으로 현장 데이터를 수집하는 기술의 중요성이 증대되고 있다. 이러한 접근법들은 주로 각종 센서와 통신 기술을 활용하여 특정 제조 데이터를 확보하는 것에 초점을 맞춘다. 현장 데이터 수집의 채널을 확장하기 위해 본 연구는 비전(vision) 인공지능 기반으로 제조 데이터를 자동 수집하는 방법을 제안한다. 이는 실시간 영상 정보를 객체 탐지 및 추적 기술로 분석하고, 필요한 제조 데이터를 확보하는 것이다. 연구진은 객체 탐지 및 추적 알고리즘으로 YOLO(You Only Look Once)와 딥소트(DeepSORT)를 적용하여 프레임별 객체의 움직임 정보를 수집한다. 이후, 움직임 정보는 후보정을 통해 두 가지 제조 데이터(생산 실적, 생산 시간)로 변환된다. 딥러닝을 위한 학습 데이터를 확보하기 위해 동적으로 움직이는 공장 모형이 제작되었다. 또한, 실시간 영상 정보가 제조 데이터로 자동 변환되어 데이터베이스에 저장되는 상황을 재현하기 위해 운영 시나리오를 수립하였다. 운영 시나리오는 6개의 설비로 구성된 흐름 생산 공정(flow-shop)을 가정한다. 운영 시나리오에 따른 제조 데이터를 수집한 결과 96.3%의 정확도를 보였다.

퍼지 콘트라스트와 HOG 기법을 이용한 지능형 감시 시스템 (An Intelligent Surveillance System using Fuzzy Contrast and HOG Method)

  • 김광백
    • 한국정보통신학회논문지
    • /
    • 제16권6호
    • /
    • pp.1148-1152
    • /
    • 2012
  • 본 논문에서는 퍼지 콘트라스트와 HOG 기법을 이용한 지능형 감시 시스템을 제안한다. 제안된 감시 시스템은 주로 침입자 탐지를 위한 것으로 감시 영상에서 명암 대비를 강조하기 위해 퍼지 콘트라스트 기법을 적용한 후, 감시 전/후 영상에 Substraction 기법을 적용한다. Substraction 기법이 적용된 영상에서 히스토그램의 변화가 큰 경우에는 침입자의 침입으로 간주한다. 침입으로 간주된 영상에서 감시 대상의 물체를 감시할 영상과 침입자를 실시간으로 추적하기 위한 영상으로 구분한다. 감시 대상의 물체를 감시할 영상에서는 퍼지 이진화를 적용한다. 퍼지 이진화를 적용한 영상에서 Blob 기법을 적용하여 객체화 한 후, 침입된 침입자의 영상을 저장한다. 침입자를 실시간으로 추적할 영상에서는 HOG 기법을 적용한 후, SVM 기법을 적용하여 움직이는 사람의 객체를 추적한다. 제안된 방법을 실제 실시간 영상에 적용한 결과, 제안된 감시 시스템이 효율적으로 침입자를 감시하는 것을 확인할 수 있었다.

무인항공기의 근거리 비행체 탐지 및 추적을 위한 영상처리 알고리듬 (An Image Processing Algorithm for Detection and Tracking of Aerial Vehicles in Short-Range)

  • 조성욱;허성식;심현철;최형식
    • 한국항공우주학회지
    • /
    • 제39권12호
    • /
    • pp.1115-1123
    • /
    • 2011
  • 본 논문에서는 무인항공기의 근거리 비행체 탐지 및 추적을 위한 영상처리 알고리듬을 제안한다. 제안된 알고리듬은 연속되는 영상에서 계산되는 호모그래피를 사용하여 움직이는 객체를 검출하고 확률적 다수-가설 추적기법으로 검출된 객체가 접근하는 비행체인지의 여부를 판단한다. 이는 항공기의 저고도 비행 시 영상에 보여지는 지표면과 같이 복잡한 배경 위에서 이동하는 비행체를 검출할 수 있고, 비행체의 동역학적 특성을 고려할 수 있기 때문에 색상기반의 비행체 탐지기법보다 향상된 성능을 보여준다. 또한 외부영향에 대한 임계치의 민감도를 현저히 감소시키므로 소형 무인항공기의 저고도 비행실험수행 시 효과적이다. 제안된 영상처리 알고리듬을 실제 비행실험 영상에 적용하여 성능을 검증하였다.

효율적인 영상 처리 교육방법을 위한 지능형 영상 감시 시스템 구현에 관한 연구 (A Study on Implementation of an Intelligent Video Surveillance System for Effective Education Method of Image Processing)

  • 박호식
    • 한국실천공학교육학회논문지
    • /
    • 제2권1호
    • /
    • pp.84-88
    • /
    • 2010
  • 최근들어 보안이 중요시되는 공간에서 임의의 객체를 추적하고 인식할 수 있는 시스템의 필요성이 점차 중요시 되고 있다. 이에 따라 본 논문에서는 효율적인 영상 처리 교육을 위한 지능형 영상 시스템을 구현하고 제안하고자 한다. 제안된 시스템은 검지 영역내 차량의 진입 및 추적 실험을 하였고, 차량이 검지영역 내에서 정차시 Pan-Tilt-Zoom 카메라를 제어하여 객체의 확대 영상을 취득하도록 하였다. 실험 결과 움직이는 차량의 경우 97.4%, 정차해 있는 차량의 경우 91%의 추적율을 나타내었다. 또한 제안된 시스템은 교육진행시 실시간 영상 데이터 사용 및 카메라 제어를 다수의 학생들이 동시에 할 수 있음으로 효율적인 영상 처리 교육을 진행 할 수 있을 것으로 사료된다.

  • PDF

감시 영상에서의 장면 분석을 통한 이상행위 검출 (Detection of Abnormal Behavior by Scene Analysis in Surveillance Video)

  • 배건태;어영정;곽수영;변혜란
    • 한국통신학회논문지
    • /
    • 제36권12C호
    • /
    • pp.744-752
    • /
    • 2011
  • 지능형 감시 분야에서 이상행위를 검출하는 것은 오랫동안 연구되어온 주제로 다양한 방법들이 제안되어 왔다. 그러나 많은 연구가 움직이는 객체의 개별적인 추적이 가능하다는 것을 전제로 하여 찾은 가려짐이 발생하는 실생활에 적용하는데 한계가 있다. 본 논문에서는 객체 추적이 어려운 복잡한 환경에서 장면의 주된 움직임을 분석하여 비정상적인 행위를 검출하는 방법을 제안한다. 먼저, 입력영상에서 움직임 정보를 추출하여 Visual Word와 Visual Document를 생성하고, 문서 분석 기법 중 하나인 LDA(Latent Dirichlet Allocation 알고리즘을 이용하여 장면의 주요한 움직임 정보j위치, 크기, 방향, 분포)를 추출한다. 이렇게 분석된 장면의 주요한 움직임과 입력영상에서 발생한 움직임과의 유사도를 분석하여 주요한 움직임에서 벗어나는 움직임을 비정상적인 움직임으로 간주하고 이를 이상행위로 검출하는 방법을 제안한다.

배경분리를 위한 개선된 적응적 가우시안 혼합모델에서의 동적 학습률 제어 (Dynamic Control of Learning Rate in the Improved Adaptive Gaussian Mixture Model for Background Subtraction)

  • 김영주
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.366-369
    • /
    • 2005
  • 연속 영상을 이용하여 실시간으로 움직임 객체를 추출하고 추적하기 위해 배경분리(Background Subtraction) 기법을 주로 사용한다. 외부 환경에서는 조명의 변화, 나무의 흔들림과 같은 반복적인 움직임 그리고 급격히 움직이는 객체 등과 같이 고려해야할 많은 환경 변화 요인들이 존재한다. 이러한 외부 환경의 변화를 적응적으로 반영하여 배경을 분리할 수 있는 배경 모델로는 주로 가우시안 혼합 모델(GMM: Gaussian Mixture Model)이 적용되고 있으며, 실시간 성능 등을 개선시킨 적응적 가우시안 혼합 모델 등이 사용되고 있다. 본 논문은 개선된 적응적 가우시안 혼합 모델을 적용하고 고정된 학습률 ${\alpha}$(일반적으로 작은 값)을 사용함으로써 물체의 갑작스러운 움직임 등에 빠르게 적응하지 못하는 문제점을 해결하기 위해 가우시안 분포 수의 적응적 조절 기능과 픽셀 값을 분산을 이용하여 학습률 ${\alpha}$값을 동적으로 제어하는 방법을 제안하고 성능을 평가하였다.

  • PDF