• Title/Summary/Keyword: 운전 최적화

Search Result 445, Processing Time 0.024 seconds

A Study for Carbon dioxide Removal Process Using Methanol Solvent in DME Manufacture Process (DME 생산공정에서 메탄올을 이용한 이산화탄소 제거 공정 연구)

  • Cho, Duhee;Rho, Jaehyun;Kim, Dong Sun;Cho, Jungho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1502-1511
    • /
    • 2013
  • In this study, simulation works have been performed for the modeling of $CO_2$ removal process contained in the DME production process through an absorber-stripper system using methanol aqueous solution. Aspen Plus release 7.3 in AspenTech company was utilized as a simulation tool and PC-SAFT modeling equation of state was used as a thermodynamic model. Fitting parameters built-in PC-SAFT model was determined by regressing experimental data, predicted results using PC-SAFT model were compared with experimental data in order to verify the exactness of the thermodynamic model. Optimization works have been performed to reduce the utility consumptions using solvent circulation rate, column operating pressure and feed stage location as manipulated variables.

Strategy of Driver Selection in C3MR Process Considering Extraction Rate from Natural Gas Well (가스전의 추출속도를 고려한 C3MR 공정의 동력기 선택전략)

  • Lee, Sunkyu;Lee, Inkyu;Tak, Kyungjae;Moon, Il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • Natural gas liquefaction process is essential to transport natural gas for long distances. Lots of compressors in this process are needed and the energy for these compressors can be supplied by drivers. Total driver cost can be changed by selecting various drivers. This study focused on the minimization of the driver cost to provide the energy to the compressors. Moreover, scenarios, extracting velocity is changed during whole operating period, are set with considering gas well capacity. The mathematical model was established by considering trade off relationship between the capital cost and the operating cost of the turbines. The model also considers the life time of the driver equipments. As the result, the driver cost of the optimized case was reduced by 6.4% than the base case.

Study on the applicability of the ozone / AOP and activated carbon process for the removal of trace organic contaminants and taste odor causing substances (미량오염물질 및 맛 냄새유발물질의 제거를 위한 오존/AOP 및 활성탄 공정의 적용성에 관한 연구)

  • Ha, Jeongtae;Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.17 no.2
    • /
    • pp.155-162
    • /
    • 2015
  • This study was conducted to assess the removal characteristics of taste and odor causing compounds(2-MIB and geosmin) and micro organic matters. GAC and BAC process consisting of Ozone/AOP and activated carbon was applied. As a result, the influent concentration of 2-MIB 159 ng/L and geosmin 371 ng/L were removed 42% and 86% by ozone 1.0 mg/L, and 58%, 90% by AOP(ozone 1.0 mg/L + $H_2O_2$ 0.5 mg/L). Also it showed less than 2 ng/L effluent in GAC process and 99.8% removal efficiency in BAC process. Therefore, BAC process combining ozone/AOP and GAC is effective for persistent removal of micro organic matters, taste and odor. It is needed for optimization of Ozone/AOP process according to influent concentrations.

A Development of the Optimization Model for Reactive Scheduling Considering Equipment Failure (장치이상을 고려한 동적 생산계획 최적화 모델 개발)

  • Ha, Jin-Kuk;Lee, Euy Soo
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.571-578
    • /
    • 2005
  • We propose a new optimization framework for the reactive scheduling. The proposed rescheduling scheme is specially focused on how to generate rescheduling results when equipment failure occurs. The approach is based on a continuous-time problem representation that takes into account the schedule in progress, the updated information on the batches still to be processed, the present plant state, the deviations in plant parameters and the time data. To update the predictive scheduling, we used right shift rescheduling and total regeneration when equipment failure occurs. And, a practical solution to the rescheduling problem requires satisfaction of two often confliction measures: the efficiency measure that evaluates the satisfaction of a desired objective function value and the stability measure that evaluates the amount of change between the schedules before and after the disruption. In this paper, the efficiency is measured by the makespan of all jobs in the system. And, the stability is measured by the percentage change in makespan and the modified sequence deviation in the predictive scheduling and rescheduling.

Proposal of Youngjong-do 112 Block Demo-Plant for Application of Smart Water Grid (SWG 적용성을 위한 영종도 112블록 데모플랜트 구축 방안)

  • Han, Kuk Heon;Park, Hyun Ki;Kim, Young Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.108-108
    • /
    • 2016
  • 스마트워터그리드(Smart Water Grid; 이하 SWG)란 현재 직면에 있는 물 부족, 물 안보, 물 복지 등 물에 대한 문제를 ICT 기술을 활용하여 물관리의 새로운 패러다임을 제시할 수 있는 융합 기술이다. 즉, SWG는 기존의 수자원 관리 시스템의 한계를 극복하기 위해 첨단 정보통신기술을 이용하는 고효율의 차세대 인프라 시스템으로 다양한 수원을 활용하고 물을 효율적으로 배분 관리 운송하여 수자원의 불균형을 해소하고, 첨단센서네트워크를 이용해 용수관리 전분야에 걸쳐 양방향 실시간으로 용수정보를 감시 대응하여 용수관리와 에너지 효율의 최적화된 메가시티(mega-city)에 적합한 지능형 물관리가 가능할 것으로 예상되는 시스템이다. 따라서 국토교통부 과제로 추진중인 SWG 연구단에서 개발한 스마트 워터 기술을 영종도 112 블록에 적용하여 지역주민의 물복지 향상 및 물 사용자에 대한 소비자 만족도를 높이는데 목적을 두고 데모플랜트를 구축 방안을 수립하였다. 영종도 112블록(인천 운서동 및 운북동 일원)은 인천 공촌정수장에서 해저관로를 지나 영종통합 가압장에서 가압 후 공항신도시배수지에서 물을 공급받고 있는 지역으로 면적은 $17.41km^2$, 인구는 약 17,000명, 물사용량 $8,000m^3$/일, 총관로연장 약 55km, 유수율이 겨우 73.2% 지역이다. SWG 적용성 평가를 위해 영종도 112 블록에 유수율 제고 및 운영비용 저감을 목적으로 데모플랜트를 구축하였다. 스마트 계측을 위해 스마트미터 469개(15~20mm), 디지털미터 172개(25~200mm), 누수유무센서 1개소, 다항목 수질측정기 1개소, 유량계 3개소, 수압계 5개소, AMI 시스템 641개 및 물효율 운영프로그램과 물정보 App서비스 기능으로 구성하였다. 물효율 운영프로그램은 실시간 수요량 예측, 배수지 운영에 따른 취수량, 송수량, 펌프 대수조합 및 운전스케줄링이 가능한 경제적 물공급 스케줄링, 관망상태 감시 및 제어(실시간 유량/수압 분석을 통한 누수분석) 기능이 탑재되어 통합운영센터에서 운영할 계획이다. 데모플랜트 운영을 통해 수자원의 효율적인 배분 및 공급, 유지관리 향상, 운영 비용 최소화 등의 결과를 바탕으로 신도시 및 기존도시의 물관리 정책수립에 활용할 수 있을 뿐만아니라 시간적 공간적 불균형 해소 및 물시장 발전에 크게 기여할 것으로 사료된다.

  • PDF

Determination of the Optimal Operating Condition of the Hamworthy Mark I Cycle for LNG-FPSO (LNG-FPSO에의 적용을 위한 Hamworthy Mark I Cycle의 최적 운전 조건 결정)

  • Cha, Ju-Hwan;Lee, Joon-Chae;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.733-742
    • /
    • 2010
  • In this study, optimization was performed to improve the conventional liquefaction process of offshore plants, such as a LNG-FPSO(Liquefied Natural Gas-Floating, Production, Storage, and Offloading unit) by maximizing the energy efficiency of the process. The major equipments of the liquefaction process are compressors, expanders, and heat exchangers. These are connected by stream which has some thermodynamic properties, such as the temperature, pressure, enthalpy or specific volume, and entropy. For this, a process design problem for the liquefaction process of offshore plants was mathematically formulated as an optimization problem. The minimization of the total energy requirement of the liquefaction process was used as an objective function. Governing equations and other equations derived from thermodynamic laws acted as constraints. To solve this problem, the sequential quadratic programming(SQP) method was used. To evaluate the proposed method in this study, it was applied to the natural gas liquefaction process of the LNG-FPSO. The result showed that the proposed method could present the improved liquefaction process minimizing the total energy requirement as compared to conventional process.

Development of Carbon-based Adsorbent for Acetylene Separation Using Response Surface Method (반응 표면 분석법을 활용한 Acetylene 분리용 탄소기반 흡착제 개발)

  • Choi, Minjung;Yoo, Kye Sang
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.29-33
    • /
    • 2019
  • Carbon nanotubes, nanofibers and powders were used for acetylene adsorption experiments. A total of 15 different experiments were designed by 3-level of Box-Behnken Design (BBD) with 3 factors including the Pd concentration of 0 to 5%, adsorption temperature of 30 to $80^{\circ}C$ and $C_2H_2/CO_2$ of 3 to 10. Based on those data, a second order polynomial regression analysis was used to derive the adsorption amount prediction equation according to operating conditions. The adsorption temperature showed the greatest influence index while the $C_2H_2/CO_2$ ratio showed the smallest according to the F-value measurement of the ANOVA analysis. However, there was little interaction between major factors. In the adsorption optimization analysis, a 22.0 mmol/g was adsorbed under the conditions of Pd concentration of 3.0%, adsorption temperature of $47^{\circ}C$ and $C_2H_2/CO_2$ of 10 with 95.9% accuracy.

Derivation of Optimal Conditions and Effect of Treated Water Quality for Treatment of Drinking Water using Inorganic Membrane (무기막을 사용한 먹는물 처리 시 최적의 조건 도출 및 처리수질에 미치는 영향)

  • Won, Chan-Hee
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.543-549
    • /
    • 2018
  • In this study, the treatment efficiency of inorganic membrane according to the flux that blending raw water was investigated at the laboratory level. Based on the results of each blending and flux, we obtained the best efficiency according to each measurement item. The treatment efficiencies were different depending on the raw water and treatment amount of the treated water. Especially, turbidity removal efficiency was high. In the case of $UV_{254}$, the removal efficiency according to the concentration of the raw water and the removal efficiency according to the flux of the treated water showed a maximum of 69 % to minimum of 48 %. In the case of TOC and DOC, the processing efficiency was 22 % and 28 %, respectively, because the organic value of the raw water was low. These results suggest that there is an optimal process to effectively remove contaminants from the inorganic membrane process, and it is necessary to optimize it according to operating conditions.

Numerical Analysis of Concentration Polarization for Spacer Configuration in Plate Type Membrane Module (평판형 분리막 모듈 내 스페이서 형태에 따른 농도분극에 관한 수치해석)

  • Shin, Ho Chul;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.703-710
    • /
    • 2011
  • As the spacer in the membrane module provide the channel space to flow the feed solution smoothly and induce the flow turbulence, it could help to reduce both the concentration polarization and to take the long-term operation of membrane modules with high permeate flux by mixing the accumulated contaminants on the membrane surface into the bulk solution. In this study, the concentration distribution in membrane module with respect to the spacers which have the cross-sectional shapes of circle, cross, diamond and hexagon, the angles of spacer configuration, solute rejection and permeate flux were interpreted and optimized numerically using the "COMSOL Multiphysics" software. The concentration on the membrane surface was kept the lowest level for the cross-shape among the above four types of spacers. Also the 30 degree spacer configuration was showed as the most efficient case. The concentrations on the membrane surface at the module outlet for without spacer and the cross shape with the 30 degree spacer configuration were 2.09 and 1.29 times higher than those at inlet, respectively. The reduction effect of concentration polarization increased rapidly as the permeate flux increased.

Optimization of Operating Conditions for Each Linked Treatment Scenario using Sewage Treatment Modeling (하수처리 모델링을 이용한 연계처리 시나리오별 운전조건 최적화)

  • Kim, Sungji;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • Due to rapid industrial development, population growth, and improvement of living standards, the amount of sewage and wastewater, including nutrients, is increasing every year. In addition to the increasing amount of sewage and wastewater generation, untreated linked treated water (manure, livestock manure, industrial wastewater, leachate, food waste) is also increasing, and many of the linked treated water flows directly into nearby sewage treatment plants. The associated treated water causes many problems because of its own characteristics, low flow rate with high concentration compared to existing inflow sewage. In order to solve this problem, it is necessary to investigate the quantity and quality of the connected treated water whichh is flowed into the sewage treatment plant, and a study the effect on sewage treatment. Therefore, in this paper, we would like to examine the effect of the linked treated water. Seasonal effect associated with water pollution conditions was considered. In addition, a scenario was created through the distribution and inflow of connected treated water along with the water temperature conditions. Through scenario analysis, we intend to optimize the operating conditions of linked processing.