• Title/Summary/Keyword: 운전자행태

Search Result 182, Processing Time 0.024 seconds

Estimation of Driving Behavior Characteristics through Self-Reported-Based Driving Propensity (자기보고 기반 운전성향을 통한 주행행태 특성 추정 연구)

  • Sooncheon Hwang;Dongmin Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.1
    • /
    • pp.26-41
    • /
    • 2024
  • To ensure safer road conditions, understanding the human factors influencing driving behavior is crucial. However, there are many difficulties in deriving the characteristics of individual human factors that affect actual driving behaviors. Therefore, this study analyzes self-reported dangerous-driving propensities in order to explore potential correlations with drivers' behaviors. The goal is to propose a method for assessing driving tendencies based on varying traffic scenarios. The study employed a questionnaire to gauge participants' propensity to drive dangerously, utilizing a simulator to analyze their driving behaviors. The aim is to determine any notable connections between dangerous-driving propensity and specific driving behaviors. Results indicate that individuals exhibiting a high propensity for reckless driving, as identified by the Korean DBQ, tend to drive at higher speeds and display more aggressive acceleration patterns. These findings contribute to a potential method for assessing reckless driving drivers.

Development of technology in estimating of high-risk driver's behavior (고위험군 운전자의 운행행태 판단기술 개발)

  • Jin, Ju-Hyun;Yoo, Bong-Seok;Lee, Wook-Soo;Kim, Gyu-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.5
    • /
    • pp.531-538
    • /
    • 2016
  • Driving behaviors such as speeding and illegal u-turn which violate traffic rules are main causes of car accidents, and they can lead to serious accidents. Bus drivers are less aware of dangers of illegal u-turn, and infrastructures such as traffic enforcement equipment and watchmen are deficient. This research aims to develop technology for estimating driving behaviors based on map-matching in order to prevent illegal u-turns. For this research, 23,782 of u-turn permit data and 146,000 of speed limit data are collected nationwide, and an estimation algorithm is built with these data. Then, an application based on android is developed, and finally, tests are conducted to assess the accuracy in data computations and GPS data map-matching, and to extrapolate driving behavior. As a result of the tests, the accuracy results in the map-matching is 86% and the assessment of driving behavior is 83%, while the display of the data output yielded 100% accuracy. Additional research should focus on improvement in accuracy through the development of a robust monitoring system, and study of service scenarios for technology application.

Development of a Gap Acceptance Model for the Simulation of Merging Area on Urban Freeways (모의실험 전산모형을 위한 도심고속도로 합류부 간격수락행태모형 개발)

  • 김준현;김진태;장명순;문영준
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.6
    • /
    • pp.115-128
    • /
    • 2002
  • Traffic engineers have developed and implemented various microscopic simulation models to verify the traffic performance and to prevent the expected problems. The existing microscopic simulation models categorize drivers into several types to reflect various drivers' driving patterns but miss the dynamics of drivers' behavior changed based upon the traffic conditions. It was found from the field data collected from two different merging sections on an urban freeway in Seoul, Korea, that the drivers' critical gap distributions are changed based on (1) the traffic density on the adjacent lane to the acceleration lane and (2) the opportunities left to merge in terms of distance to the end of acceleration lane. It was also found from the study that the drivers' critical gap distributions follow the Normal distribution. and its mean and variance change while a vehicle progresses on an acceleration lane. This paper proposes a new gap-acceptance model developed based on a set of drivers' critical gap distributions from each segment on the acceleration lanes. Through the comparison study between the field data and the results from the simulation utilizing the proposed model, it was verified that (1) the distribution of merging points on an acceleration lane to the adjacent main lane at different density levels, (2) the size of the gap accepted for merging and (3) the speed difference between the merging vehicle and the trailing vehicle at the time of merging are statistically identical to the field data at 95% confidence level.

Analysis of Dilemma Zone Safety Considering Signal Location (신호기 위치에 따른 딜레마존 안전율 분석)

  • Ryu, Chang-Nam;Kim, Won-Chul;Jang, Tae-Youn;Lim, Sam-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • One of purposes of installing signals at intersections is to protect traffic conflicts and accidents from occurring by means of arranging the right-of-way of travel more clearly. On the other hand, the installation of signals, and especially their location, can also have negative effects on safety. Therefore, the location of signals is of great importance. To secure a high safety level for urban signalized intersection, efforts are required to introduce a comprehensive recommendation or guideline for safety aspects of signal installation that takes local conditions into account. In this context, this reports on a study that analyzed the influence of signal location on the behavior of drivers who approach a signalized intersection in urban area. As a result, the study found out that the traffic signal location strongly affects the braking point of the Dilemma Zone(DZ), and the braking point of the DZ based on driving speed. Also, in terms of design layout, it has been illustrated that there is a close relation between signal location and road safety, especially DZ safety. Finally, this paper proposes a practical recommendation for signal installation related to how to locate the signal in practice for the sake of securing the safety level of signalized intersection.

A study on driver experience to railway crossings in driving simulator (차량 시뮬레이터를 이용한 철도건널목 운전행태에 관한 연구)

  • Kim, Inhi;Lee, Seonha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.2
    • /
    • pp.57-67
    • /
    • 2014
  • In the last decade, various situations were simulated through virtual environment due to rapid improvement of computer capability and technology. Transportation engineering also has adopted the virtual environment facility in order to identify drivers behaviour under various circumstances. This study aims to evaluate driver reactions to the introduction of new ITS interventions at railway crossings (RLX) in driving simulator. Three ITS safety devices were used to figure out how drivers reacted to them. In addition, a survey was conducted to find participants' work load and acceptance of the technology. The ultimate purpose of this paper is to evaluate ITS safety devices in various aspects. Each participant made 3 runs (2 baselines, 1 ITS randomly) for approximately 20 minutes each. The participants answered that current railway crossings did not look safe prior to experiment. They responded that the use of ITS technologies were easy and the technologies were more effective on passive railway crossings.

Development of Road Safety Estimation Method using Driving Simulator and Eye Camera (차량시뮬레이터 및 아이카메라를 이용한 도로안전성 평가기법 개발)

  • Doh, Tcheol-Woong;Kim, Won-Keun
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.185-202
    • /
    • 2005
  • In this research, to get over restrictions of a field expreiment, we modeled a planning road through the 3D Virtual Reality and achieved data about dynamic response related to sector fluctuation and about driver's visual behavior on testers' driving the Driving Simulator Car with Eye Camera. We made constant efforts to reduce the non-reality and side effect of Driving Simulator on maximizing the accord between motion reproduction and virtual reality based on data Driving Simulator's graphic module achieved by dynamic analysis module. Moreover, we achieved data of driver's natural visual behavior using Eye Camera(FaceLAB) that is able to make an expriment without such attaching equipments such as a helmet and lense. In this paper, to evaluate the level of road's safety, we grasp the meaning of the fluctuation of safety that drivers feel according to change of road geometric structure with methods of Driving Simulator and Eye Camera and investigate the relationship between road geometric structure and safety level. Through this process, we suggest the method to evaluate the road making drivers comfortable and pleasant from planning schemes.

  • PDF