• Title/Summary/Keyword: 운용시험평가

Search Result 265, Processing Time 0.025 seconds

A study on the temperature guidelines of weapon systems test & evaluation in the coastal environment of the Korean peninsula (한반도 연해안지역 환경시험기준의 테일러링을 위한 온도기준 설정에 관한 연구)

  • Yun, Songhyun;Kim, Siok;Cho, Yuseup;Hong, Yeonwoong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.6
    • /
    • pp.1437-1445
    • /
    • 2017
  • This paper suggests a temperature guidance which must be addressed in the preparation of specifications for military equipment used in ocean/coastal environment of the Korean peninsula. It would often be costly to design materiel to operate under the most extreme environmental conditions ever recorded. Therefore, military planners usually accept equipments designed to operate under environmental stresses for all the time except a certain small percentage of the time. In this study, an 1-percent frequency of occurrence is recommended. Pohang and Shineiju are chosen to represent the hottest and coldest regions, respectively, based on surface weather observations among 28 costal regions from 1904 to 2015. The 1st and 99th percentile temperatures for Pohang and Shineiju are $37.7^{\circ}C$ and $-23.7^{\circ}C$, respectively. Diurnal cycles, including solar radiation, relative humidity and wind-speed are also provided.

A study on the Structural Stability about the Fan Blade by the Air Excited Forces. (공기 가진력에 의한 팬 블레이드 구조 안정성 평가에 관한 연구)

  • 정규강;김경희;조생현
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.93-101
    • /
    • 2000
  • In a gas-turbine engine, fan blades in flow path are confronted with many kinds of loading. The study of the excited force by the wake of struts has proposed and the possibility of fatigue failure about rotating fan blades by the excited force at the steady state is evaluated. Equations of the excited force of wakes has been derived at the steady state and the maximum pressure distributions measured at the transient state are proposed. Dynamic characteristics and the fatigue strength of fan blades by experimental test were obtained. To evaluate HCF(High Cycle Fatigue) damage of fan blades, FEM analysis was performed with a steady state harmonic response, which was followed by high cycle fatigue damage factor from goodman diagram.

  • PDF

Methodology of Interoperating Link-K Track Number in Multi TDLs (다중 전술데이터링크 간 Link-K 트랙 번호 상호운용 기술)

  • Lee, Youn-Jeong;Kim, Sang-Jun;Lim, Man-Yeob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1186-1195
    • /
    • 2013
  • In modern warfare, the main factor of triumph is superior situation awareness which leads rapid command decision and precisely guided munition, and TDL(Tactical Data Link) is the main communicational enabler. ROK forces currently operate Link-16 with allied forces and are also developing Korean national data link, Link-K which is also planned to be cooperated with Link-16. Assigning participant and track numbers needs agreement between ROK and allied forces, but ROK forces have exclusive authority in assigning numbers in Link-K. This paper proposes the effective method of exchange participant and track numbers between Link-16 and Link-K, and applicability verification in operational test and evaluation will be also presented.

The Rubber Performance Evaluation for Kick Motor Flexible Seal (킥모터 플렉시블 씰 개발을 위한 고무의 성능 평가)

  • Kim, Byung-Hun;Kwon, Tae-Hoon;Cho, In-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.90-95
    • /
    • 2011
  • A Kick Motor, KSLV-I second stage propulsion system, utilizes a flexible seal for pitch and yaw axis controls during combustion. A flexible seal consists of the alternate laminate of rubber and composite reinforcement between forward and aft rings. A Kick Motor nozzle is rotated by the shear deformation of rubber layers. Consequently, the development of rubber, which is appropriate to the usage condition of flexible seal, is very important. A tensile test, QLS test (shear modulus and failure shear stress), and aging test have been carried out to confirm the performance of rubber developed. Test results show that the shear modulus of rubber are 0.4310 ~ 0.4997MPa and the failure shear stress is more than 2.5MPa.

Thermal and Vibration Analysis of TR Module Structural Model for Environmental Test Evaluation (환경시험 평가를 위한 TR 모듈 구조모델의 열/진동 해석)

  • Dong-Seok Kang;Jong-Pil Kim;Yuri Lee;Sung-Woo Park;Jin-Ho Roh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.96-101
    • /
    • 2024
  • The Synthetic Aperture Radar (SAR) is equipped with a Transmitter/Receiver (TR) module, which serves as the signal transmission and reception unit for acquiring image data. The TR module generates significant heat during signal generation and amplification, potentially degrading performance or causing mission failure. Furthermore, launch and operational environments may result in structural damage to the components. Thus, assessing the thermal and structural safety of the TR module through thermal and vibration tests is essential to guarantee its safety. Safety assessments can be verified through environmental tests prescribed in MIL-STD-883. This paper explores the thermal and structural safety characteristics of the TR module by simulating test environments using finite element analysis prior to conducting environmental tests.

The Development of Performance Test Equipment For Evaluating Endothermic Performance of Fuel Supply and Cooling System in High-Speed Vehicles (고속비행체 연료 공급 및 냉각 계통의 흡열성능 평가를 위한 성능시험 장치 개발)

  • Kim, Minsang;Choi, Won;Jun, Pilsun;Park, Jeongbae
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.4
    • /
    • pp.43-49
    • /
    • 2019
  • In this study, a test equipment which enables to feed endothermic fuel which is heated in the inside and outside environment of a high-speed vehicle and evaluate the heat exchangers' performance was designed and manufactured. For smooth operation of the test equipment, a test procedure that supplied endothermic fuel at high temperatures was established. The catalyst performance test was conducted based on the supply condition of the endothermic fuel and the amount of heat absorbed was analyzed. The validation of the test equipment was proved by comparing the results of catalytic reaction with the previous studies under similar reaction condition. This test equipment can be utilized in the endothermic reaction tests of catalyzed endothermic fuel under various conditions.

Performance Evaluation of Propeller for High Altitude by using Experiment and Computational Analysis (시험과 전산해석을 이용한 고고도용 프로펠러 성능 분석)

  • Park, Donghun;Cho, Taehwan;Kim, Cheolwan;Kim, Yangwon;Lee, Yunggyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.12
    • /
    • pp.1035-1047
    • /
    • 2015
  • Wind tunnel experiment and computational analysis have been carried out to evaluate the performance of propeller for scale electric-powered HALE UAV, named EAV-2H+. Performance curves are measured for three propellers and their adequacy for EAV-2H+ installation is examined through consideration of operating conditions. Decline in performance coefficients is observed in low rpm region. Also, the effect of transition tape on propeller performance is measured and analyzed. The computational performance analyses are carried out by using commercial CFD program. The thrust and power coefficient from computations show good agreement with experimental results. Performance coefficients are compared and the influence of measurement device which contributes to discrepancy of the results is examined. Transition SST model is confirmed to yield the tendency of performance decline in low rpm range, similar to experimental observation. The decrease in aerodynamic performance of blade element due to low Reynolds number is identified to cause the decline in propeller performance. Analyses for high altitude conditions confirms degradation in propeller performance.

Multi-Junction Space Solar Cell Health Checking Method using Electroluminescence Phenomena (전계발광현상을 이용한 우주용 다접합 태양전지의 건전성 평가기법)

  • Park, Je-Hong;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1017-1026
    • /
    • 2009
  • The solar cell system operates by facing the sun-light. Minor cracks, static discharge, and thermal shock that can happen during production/testing phase can lead to degradation in performance during operation, since solar cells are exposed to extreme thermal/mechanical environment in space. In order to detect small cracks and internal damages in the solar cells due to thermal shocks, which are the core units of a solar cell system, expensive equipment, complicated test process, and much time are required. Therefore, a qualitative method for easily and quickly testing the 'health' of solar cell functionality is required. This dissertation describes a theoretical and technical grounds for quickly and easily evaluating the health of solar cells using electroluminescence effect of Gallium-Arsenide solar cells that are most widely used by spacecrafts in recent years. Also described in the dissertation is the technical issues and constraining factors for applying the proposed method to actual space-rated solar cell systems.

Evaluation of Compaction Impact According to Compaction Roller Operating Conditions through CMV Analysis (CMV 분석을 통한 다짐롤러 운용 조건에 따른 다짐 영향 평가)

  • Kim, Jinyoung;Baek, Sungha;Kim, Namgyu;Choi, Changho;Kim, Jisun;Cho, Jinwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.11-16
    • /
    • 2022
  • The compaction process using vibrating rollers in road construction is essential to increase soil stiffness in earthworks. Currently, there is no clear standard for the operation method of the compaction roller during compaction. Although simple quality inspection techniques have been developed, plate load test (PLT) and field density test (FDT) are the most frequently used test methods to evaluate the degree of compaction during road construction as the most frequently used quality inspection methods. However, both inspection methods are inefficient because they cannot perform quality inspection in all sections due to time and cost reasons. In this study, we analyzed how the operating conditions of vibrating rollers affect the compaction quality. An intelligent quality management system, which is a currently developed and commercialized technology, was used to obtain quality inspection results in all sections. As a result of the test, it was analyzed that the speed and vibration direction of the compaction roller had an effect on the compaction degree, and it was found that the compaction direction had no effect on the compaction degree.

Life Test Design and Evaluation of Inertial Measurement Unit for Guided Weapons (유도무기용 관성측정기 수명 시험 설계 및 평가)

  • Jo, Kyoung Hwan;Moon, Sang Chan;Yun, Suk Chang;Kwon, Seung Bok;Kim, Do Hyung;Yang, Il Young
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.94-101
    • /
    • 2022
  • In this paper, we have obtained the acceleration coefficient of the IMU (Inertial Measurement Unit) to prove reliability by analyzing the characteristic of the MEMS IMU installed in guided weapon systems for overseas export and the operating environment of the guided weapon system. Additionally, based on designed life testing, we performed life tests on three the IMUs and demonstrated a target lifetime of 12 years.