• Title/Summary/Keyword: 운용모드

Search Result 224, Processing Time 0.022 seconds

Analysis of the integral fuel tank considering hygrothermal enviornmental factors (열습도 환경요소를 고려한 일체형 복합재 연료탱크의 해석)

  • Moon, Jin-Bum;Kim, Soo-Hyun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.64-69
    • /
    • 2007
  • Matrix dominant properties of composites are largely degraded under harmful environments such as temperature and humidity. Therefore we should consider the harmful environmental factors in the design of an UAV integral fuel tank subjected to high temperature and high humidity. The harmful environment experiment was performed for carbon/epoxy composites made of a unidirectional prepreg USN175B, and a plain woven fabric prepreg WSN3. The immersion experiment was performed under $90^{\circ}C$. The specimens were tested when the weight gam of specimen was saturated. The specimens were tested under $74^{\circ}C$ to obtain tensile and inplane shear properties. The results showed that the matrix dominant properties were extremely degraded by hygrothermal environment. To consider the variability of load, the anti-optimization method was applied. By using this method, the worst load case was found by comparing the load convex model and stability boundary. The stability boundary was obtained by analysis of the integral wing fuel tank of UAV using degraded properties. To do this, it was known that the worst load case of the integral wing fuel tank was the hovering mode load case.

Design approach of passive vibration control using damping tape for quadrotor drone in hover (제자리 비행 조건에서 쿼드로터의 감쇠 테이프를 이용한 수동적 진동 제어 설계 방법 연구)

  • Sejun Kim;Hyungmo Kim;Seongwoo Cheon;Sungjun Kim;Haeseong Cho;Lae-Hyong Kang
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.37-45
    • /
    • 2024
  • This paper presents a design approach for passive vibration control to reduce vertical vibrations transmitted to the control unit during hovering flight of a quadrotor drone. Ground vibration test simulation based on finite element model was performed for forced vibration analysis of the quadrotor drone. First, modal analysis was performed to evaluate dynamic characteristics. Forced vibration response analysis was then performed to obtain the steady-state response within the operating frequency range under the hovering flight condition. Furthermore, to obtain the vibration reduction effect, a viscous damping tape was applied at positions that could induce vibrations transmitted to the control unit under the same conditions. Such a passive vibration control approach was investigated. Relevant vibration reduction effect was assessed with respect to the application of damping materials and the attachment position.

Report about First Repeated Sectional Measurements of Water Property in the East Sea using Underwater Glider (수중글라이더를 활용한 동해 최초 연속 물성 단면 관측 보고)

  • GYUCHANG LIM;JONGJIN PARK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.29 no.1
    • /
    • pp.56-76
    • /
    • 2024
  • We for the first time made a successful longest continuous sectional observation in the East Sea by an underwater glider during 95 days from September 18 to December 21 2020 in the Korea along the 106 Line (129.1 °E ~ 131.5 °E at 37.9 °N) of the regular shipboard measurements by the National Institute of Fishery Science (NIFS) and obtained twelve hydrographic sections with high spatiotemporal resolution. The glider was deployed at 129.1 °E in September 18 and conducted 88-days flight from September 19 to December 15 2020, yielding twelve hydrographic sections, and then recovered at 129.2 °E in December 21 after the last 6 days virtual mooring operation. During the total traveled distance of 2550 km, the estimated deviation from the predetermined zonal path had an average RMS distance of 262 m. Based on these high-resolution long-term glider measurements, we conducted a comparative study with the bi-monthly NIFS measurements in terms of spatial and temporal resolutions, and found distinguished features. One is that spatial features of sub-mesoscale such as sub-mesoscale frontal structure and intensified thermocline were detected only in the glider measurements, mainly due to glider's high spatial resolution. The other is the detection of intramonthly variations from the weekly time series of temperature and salinity, which were extracted from glider's continuous sections. Lastly, there were deviations and bias in measurements from both platforms. We argued these deviations in terms of the time scale of variation, the spatial scale of fixed-point observation, and the calibration status of CTD devices of both platforms.

First Observational Finding of Submesoscale Intrathermocline Eddy in the East Sea using Underwater Glider (수중글라이더를 활용한 동해 아중규모 중층성 소용돌이 발견)

  • PARK, JONGJIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.2
    • /
    • pp.332-350
    • /
    • 2019
  • Zonal hydrographic section measurements at $39.7^{\circ}N$ were conducted between $129.0^{\circ}E$ and $131.3^{\circ}E$ from August 7 to 25 in 2017 using an underwater glider. The glider traveled about 440 km for about 18 days along the 106 line of the regular shipboard measurements in the National Institute of Fishery Science (NIFS) and obtained twice a hydrographic section with high horizontal resolution. Even under the strong East Korea Warm Current with maximum speed of 0.8 m/s across the section, the glider successfully maintained the designated path within an RMS distance of 400 m. By comparing with the NIFS shipboard hydrographic section, it is confirmed that high spatial resolution measurements obtained from a glider were necessary to properly observe front and eddy variability in the East Sea where a typical spatial scale is smaller than the open oceans. From the glider section measurements, a new lens-shaped eddy was found in the thermocline. The lens-shaped anticyclonic eddy had 10~13 km in horizonal width and about 200 m in height like a typical submesoscale eddy resided within the thermocline, which was firstly named as Korea intrathermocline eddy (Keddy). The Keddy has the distinguishing characteristics of a typical intrathermocline eddy, such as a central core with anomalously weak stratification, a convex shaped lens bounded by the stratification anomaly, an interior maximum of velocity at 170 m, no surface appearance of the geopotential field, a small or comparable horizontal width relative to the first baroclinic Rossby radius of deformation, and the Rossby nubmer of 0.7.