• Title/Summary/Keyword: 운동응답 분석

Search Result 223, Processing Time 0.025 seconds

Response Reduction of a SDOF Structure based on Friction Force Ratio of MR Controller (MR제어기의 마찰력비에 따른 단자유도 구조물의 응답감소)

  • Seong, Ji-Young;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.4
    • /
    • pp.435-443
    • /
    • 2010
  • This study presents key parameters for the structure installed with MR controller in reducing its responses. MR controller is regarded as Bingham model of which control forces are frictional and viscous ones. The parameters are identified as friction force ratios, $R_f$ and $R_h$ which are, respectively, ratio of MR controller friction force to static restoring force for free vibration and ratio of the friction force to amplitude of harmonic force. Structure-MR controller system shows nonlinear response behavior due to friction force. Energy balance strategy is adopted to transform the behavior to linear one with equivalent damping ratio. Finally, proposed equivalent linear process is compared to the nonlinear one, which turns out to give acceptably good results.

Seismic response analysis of virtual honam-jeju subsea tunnel (지진시 가상 호남-제주 해저터널의 지반응답 특성)

  • Kwak, Chang-Won;Jang, Dong-In;Park, Inn-Joon;Park, Seong-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.319-329
    • /
    • 2016
  • Underground structures such as subsea tunnel having large section should be stable against seismic loads. In general, underground structures show more stable behavior due to the limited dynamic motion and force, and considerable energy dissipation; however, severe damage was reported from recent earthquakes. Therefore, more sophisticated and analytic approach is required to investigate the seismic response of underground structure like subsea tunnel. In this study, seismic analysis of virtual Honam-Jeju subsea tunnel are performed. Consequently, stresses and forces of tunnel lining increased at fractured and/or weak rock zones. Stresses and forces of tunnel lining also increased at large section under axially deformed condition; however, decrease under transversely deformed condition.

Numerical Simulation for New Marine Instrumentation Buoy (해상계측용 소형 부표 설계를 위한 수치 시뮬레이션)

  • Ryu, Youn-Chul;Seong, Yu-Chang;Lee, Gyoung-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.497-502
    • /
    • 2013
  • There are currently 10 types of buoy, mostly which' design and development is dependent on foreign technology. In this study, it is aimed at the development of small instrumentation buoy and at the design proposal presented a numerically safety. The numerical method has the simulation of variety of marine environments, such as wave response amplitude ratio and each flux changes. Through the numerical simulation of buoy's kinetic movement, it is analyzed that Pitching motion increases by the frequency response of encounter and Added resistance appears to be the most significant on transverse waves. Finally, the proposed buoy is confirmed with the response' safety under simulation' conditions.

Dynamic Response Analysis of Offshore Guyed Tower Subjected to Strong Earthquake under Moderate Random Waves (지진과 파랑하중을 동시에 받는 해양 가이드 타워의 비정상 동적 응답해석)

  • Ryu, Chung Son;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.65-75
    • /
    • 1993
  • Presented is a method for nonstationary response analysis of an offshore guyed tower subjected to strong earthquake motions under moderate random waves and current loadings. By taking the time varying envelope function and the auto-correlation function of the ground acceleration in terms of complex exponential functions, an analytical procedure is developed for computing time varying variances of the tower response. The stationary responses due to small random waves are obtained by using frequency domain method, and the results are combined with the nonstationary results due to earthquakes. Finally, the expected maximum responses are estimated. Through the example analyses, the nonstationary method developed in this study is verified, and the contributions of the earthquake, wave and current loadings to the total maximum response are investigated.

  • PDF

Lateral and Directional SCAS Controller Design Using Multidisciplinary Optimization Program (통합 최적화 프로그램을 이용한 횡운동 SCAS 제어기 설계)

  • Lee, Sang-Jong;Lee, Jang-Ho;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • The flight controller should meet the flying qualities, stability margins, and time response requirement according to the class of a target aircraft or UAV. Classical design process of PID controller is a very time consuming process and needed trial and erros. The best way is to apply the multi-disciplinary optimization algorithm to meet the numerous constraints of controller requirements. This paper presents how multi-objective parameter optimization (CONDUIT) can be used to determine many design parameters of lateral stability and augmentation system for roll and heading controller of the small UAV. To verify the effectiveness of applying the optimization method, designed controller using optimization are compared with the baseline controller that is designed only considering the time responses.

Hydraulic Model Tests for a Pontoon-Type Floating Structure with a Horizontal Damping Plate (수평 감쇠판이 부착된 폰툰형 부유식 구조물의 수리모형실험)

  • Jeongsoo Kim;Young Taek Kim;Youn Ju Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.36 no.4
    • /
    • pp.149-157
    • /
    • 2024
  • In this study, hydraulic model tests were conducted to investigate the effect of a horizontal damping plate on the motion of the pontoon-type floating structure. The floating structures with and without the horizontal damping plates were fabricated with the scale of 1/20 and their motion responses to the regular and irregular wave conditions were investigated. From the comparison for the responses of each model with 16 wave conditions, it could be known that the damping plate made the response of the the pontoon to be smaller by about 5 to 10 % compared with the normal rectangular pontoon.

Research on Planning and Design of Smart Fitness Wear for Personal Training Improvement (퍼스널 트레이닝 효과 향상을 위한 스마트 피트니스웨어의 상품기획 및 디자인 방향 연구)

  • Jung, Chanwoong;Kwak, Yonghoo;Park, Seoyeon;Lee, Joohyeon
    • Science of Emotion and Sensibility
    • /
    • v.20 no.3
    • /
    • pp.97-108
    • /
    • 2017
  • The purpose of this study was to propose a product planning and design direction for smart fitness wear that will improve the impact of personal training based on researching the requirements of smart fitness wear and its acceptance level, as well as the functional demand. The study conducted in-depth interviews with professional fitness trainers and derived five categories and thirteen keywords by analyzing the categorical data analysis using the interview data. In addition, we surveyed general consumers to measure the acceptance level of smart fitness wear and the functional demand for product development. The results revealed that the difference in the acceptance level of smart fitness wear generally depended on the characteristics related to exercise involvement and exercise-related culture rather than on the demographic characteristics. With regard to the difference in the functional demand of smart fitness wear, the results showed that professional trainers focused on the scientific improvement of the effect of exercise while general consumers focused on the function that considers the sustainability of exercise. Based on the results, we proposed product planning and design directions such as 'mounting of heart rate sensing, muscle activity sensing, motion angle or posture sensing, and motion sensing', 'development of concepts and contents for expert line, ordinary line', 'compression wear design', and 'differentiation of product development according to exercise areas'.

An analytic study on the hull characteristics of ship accidents at low capsizing speeds (저속으로 전복되는 선박사고의 선체 특성에 대한 해석적 연구)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.235-239
    • /
    • 2016
  • The capsizing speed of an unstable vessel with a lost restoring moment can be understood as a unique response to an accident situation, and is naturally affected by such parameters as moment of inertia, metacentric height, and transverse damping coefficient of the hull in the case of free roll motion. Additionally, it is supposed that the analysis of capsize accidents can be further simplified when a vessel's leaning velocity is shown to be quite low. Therefore, capsize accidents with low leaning speeds are desirably categorized in view of rescuing strategies, as opposed to fast capsize accidents, since the attitude of the declining hull can be properly estimated, which allows rescuers to have more time for helping accident cases. This study focuses on deriving some analytical equations based on the roll decay ratio parameter, which describes how a hull under a low-speed capsize is related to the situational hull characteristics. The suggested equations are applied to a particular ship to disclose the analytical responses from the model ship. It was confirmed that the results show the general characteristics of slow capsizing ships.

Development of Time Lag Considered (TLC) Crowd Load Model Based on Probabilistic Approach (개인별 시간지연효과를 고려한 확률론적 군중 하중모형 개발)

  • Kim, Sung-Yong;Lee, Cheol-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • To overcome the limitations of current evaluation procedures for floor vibration under crowd loading, two kinds of uncertainties associated with individual time lag differences and the complex behavior of crowd should be taken into account. The complex behavior of crowds has yet to be fully described, even though individual differences can be dealt with statistically. This paper proposes time lag considered (TLC) crowd model based on a probabilistic approach. The load reduction factor, which reflects the effect of a general degree of synchronization among crowd, is proposed. Extensive Monte Carlo simulations were carried out to determine various crowd behaviors by using the TLC crowd model proposed. The TLC crowd model can rationally treat the energy loss of various crowd patterns. This indicates that it may be used as a theoretical basis in refining dynamic load factor of crowd loading.

Evaluation of Landing Impact Characteristics of Sport Shoes in Running by finite Element Analysis (유한요소 해석을 통한 스포츠화의 런닝 시 착지충격 특성평가)

  • Kim, Sung-Ho;Cho, Jin-Rae;Lee, Shi-Bok;Park, Seung-Bum
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.217-225
    • /
    • 2009
  • Recently, intensive research efforts are world-widely forced on the development of sport shoes improving both the injury protection and the playing performance by taking kinesiology and biomechanics into consideration. However, the success of this goal depends definitely on the reliable evaluation of the dynamic responses of sport shoes and human foot, particularly the landing impact characteristics. It is because the landing impact force is a main source of unexpected injuries and influences the playing performance in court sport activities. This paper addresses the application of finite element method to the evaluation of landing impact characteristics of barefoot and several representative court sport shoes in running. In order to accurately reflect the coupling effect between human foot and shoes accurately, we construct a fully coupled three-diemensional foot-shoe FEM model which does not rely on the independent experimental data any more. Through the numerical simulation, we assessed the reliability of the numerical FEM model by comparing with the experimental results and investigated the landing impact characteristics, such as GRF, MIF, acceleration and frequency responses, of representative court sport shoes.