• Title/Summary/Keyword: 운교리층

Search Result 7, Processing Time 0.023 seconds

괴산-보은일대 옥천대 분포지역의 지하수 수질 특성 연구

  • 신우식;이병선;문상기;정성욱;김연태;우남칠
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.246-249
    • /
    • 2003
  • 충북 괴산군-보은군 일대를 따라 발달된 중부 옥천대의 구룡산층과 운교리층 분포지역에서, 기반암에 따른 지하수의 수질특성의 차이를 규명하고자 하였다. 2002년 11월에 18개 지점에서 지하수 시료를 채취하였고, 이를 분석하여 기반암에 따른 지하수의 수질을 분류하였다. 구룡산층 시료와 운교리층 시료 모두 Ca-(HCO$_3$+ CO$_3$) 유형의 수질특성을 보였다. 군집분석의 결과 기반암의 종류에 따라 수질특성이 나됨을 알 수 있었다. 수질 분석결과를 국내 먹는물 수질기준와 비교 하였을때, 질산성 질소 항목만 기준치를 초과하였다. 질산성 질소의 경우, 국내 먹는물 수질기준인 10 mg/L를 초과한 시료는 한 지점이었지만, 인간 활동에 의해 오염된 것으로 여겨지는 2 mg/L이상의 시료는 전체 18개 시료 중 61%인 11개 지점으로 나타나, 이 연구지역에서 인간활동에 의한 질산성 질소의 오염이 진행되고 있음을 추정할 수 있었다.

  • PDF

Geology and Soils of Chojeong-Miwon Area (초정-미원지역의 지질과 토양에 관한 연구)

  • 나기창
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.13-28
    • /
    • 2000
  • Chojeong area is mainly composed of the Ogcheon Group which consists of regionally metamorphosed, age-unknown sedimentary rocks. In the northwestern parts, the Group is intruded by the Jurassic Daebo granite and Cretaceous felsic and mafic dykes. The lowermost, Midongsan Formation which consists of milky white impure quartzite, crops out along the anticline axes with N40E trend. Ungyori quartzite Formation is intercalated with quartzite and slate. Miwon Formation is most widely exposed in the area and consists mainly of phyllitic sandy rocks with a thin crystalline limestone bed. Hwajeonri Formation is divided into two parts, pelitic lower and calcareous upper parts, composed with phyllite and slate. Changri and Hwanggangri Formations are typical members of Ogcheon Group, the former bearing coally graphite seams consists mainly of black slate and phyllite with intercalated greenish grey phyllite, the latter is pebble bearing phyllite formation of which matrix and pebbles are variable in compositions and size. Biotite granite, porphyritic granite and two mica granite belong to Jurassic so-called Dabo granite. They intruded the Ogcheon Group forming vast contact metarnophic zone. Quartz porphyry, mafic dyke and felsite intruded along the marginal zone of porphyritic granite batholith and fracture of NS trend. Main structural lineaments in Ogcheon Group shows N25-45E, NS and N30-45W trends. The N25-45E trends are mainly from general ductile deformation during regional metamorphism, showing isoclinal folding, Fl foliations and lithological erosional characters. Some of these trends are due to normal faults. The NS and N30-45W trends represent brittle deformation including faults and joints. In the area of granitic batholith, NS to N30- 45 trends are from the direction of dykes. In the soils of the area, average contents of heavy metal elements such as Cd, Cr, Cu, Pb, and Zn are 0.2, 50.6, 35.5, 27.9, and 93.4 ppm respectively, which are not higher than the average values of natural soils, under the tolerable level. Enrichment Index does not show any heavy metal pollution in the area. Average depths of weathering(5m vs. 2m), porosities(43.94 vs. 51.80), densities(l.29 vs. 1.15), and permeabilities(2.52 vs. 8.07) are comparable in granite areas and in the phyllite areas of Ogcheon Group.

  • PDF

Microstructural Intergrowth of Margarite and Chlorite in a Schist from Unkyori formation of Miwon Area (미원지역 운교리층 편암에서 산출하는 마가라이트와 녹니석의 미세 협재조직)

  • 이승준;안중호
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.255-263
    • /
    • 2003
  • Margarite, occurring in an Unkyori Formation of Miwon area, Chungcheongbukdo, South Korea, was investigated using a high-resolution transmission electron microscope (HRTEM) to reveal the microstructural intergrowth textures of margarite. HRTEM images of margarite, which was previously confirmed to have intergrowth textures by petrographic microscope and back-scattered electron images, show that chlorite occurs as thin packets of layers interlayered within margarite crystals, and intercalated chlorite layers are intergrown irregularly in areas as a few hundred angstroms thick slabs or isolated chlorite unit layers. Margarite crystals observed by HRTEM consist of a well-ordered 2M polytype, and electron diffraction pattern shows no prominent streaking along the 001 (or $c^{*}$) direction, indicating that there is no significant stacking disorder in margarite. Intercalated extra brucite-like layers, which are approximately 5 $\AA$ thick, are observed locally within margarite crystals. Insertion of such extra brucite-like layer at the interlayer of margarite would result in a chlorite-like structure unit. (001) margarite layers are parallel to (001) of chlorite, and margarite layers are not extended from (001) of chlorite, indicating that margarite was apparently produced through a dissolution-precipitation mechanism.m.

Alteration Textures and Mineral Chemistry of Margarite from Miwon Area, Chungcheongbukdo (충북미원지역에서 산출하는 마카라이트의 변질양상 및 광물화학)

  • 이승준;안중호;김현철;조문섭
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.69-77
    • /
    • 2002
  • Margarite, which occurs in the Unkyori Formation of Miwon area, Chungcheongbukdo, South Korea, was investigated using the petrographic microscope, back-scattered electron images (BSEI), and electron probe microanalyzer (EPMA) to characterize the alteration textures and mineral chemistries. Most margarite crystals are inhomogeneous, and chlorite was commonly observed to occur at the boundaries parallel to the rim of margarite. Cracks occur across the basal plane of the margarite, and margarite is partly replaced by chlorite along the cracks. In additon, muscovite and biotite are intergrown in margarite and chlorite crystals, suggesting that margarite was partially altered to chlorite as well as to muscovite and biotite. Chemical analysis data show that paragonite solid solution in the margarite is approximately 19.6 mol%, but clintonite solid solution is negligible. Margarite crystals in the Unkyori Formation cut or penetrate other metamorphic minerals In the same thin sections and are oriented randomly without any relationship with the foliation of host rocks, indicating that formed as a secondary mineral after peak metamorphism. Furthermore, it seems that hydrothermal fluids associated with the Mesozoic intrusions developed near the sample are closely related to the margarite formation.

Study of Structurally Controlled Slope Instability: Pibanryeong, Chungbuk, S. Korea (지질 구조에 의한 사면의 불안정성에 관한 연구: 충북 피반령 부근)

  • Cheong, Sang-Won;Choi, Byoung-Ryol
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.459-470
    • /
    • 2008
  • Types of slope failure related to cut slope stability are interpreted through case analyses, and also factors affecting structurally controlled instability investigated, which are developed by geologic structures along a national road No. 25 across the Cheongwon and Boeun-Guns, Chungbuk. Engineering properties such as orientation, persistence, roughness and uniaxial compressive strength of joints are analyzed by square-inventory method in three areas with well-preserved outcrops. The study area is located in Ogcheon folded bet, and are composed of quartz-schist and quartzite in the Midongsan Formation and phyllite in the Ungyori Formation. Flexural beds by folding, schistosity and cleavage besides joints are developed due to slight metamorphism. Various types of joints developed by folding are formed such as strike-parallel, strike-perpendicular, wedge and wrench joint sets by both initially regional and later superposed folding. Factors of slope instability are created by crossing the orientations of joint, cleavage, bedding and slope one another. In the case that the orientation of a slope is coincident with one of beds, factors causing large-scale failure including plane failure are increased greatly. Also in the region that orientations of the slope and bed are crossed each other at high angle, only local and minor failures are shown in the slope.

Geological Structure of Okcheon Metamorphic Zone in the Miwon-Boeun area, Korea (미원-보은지역에서 옥천변성대의 지질구조)

  • 강지훈;이철구
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.3_4
    • /
    • pp.234-249
    • /
    • 2002
  • The Miwon-Boeun area in the central and northern part of Okcheon metamorphic zone, Korea, is composed of Okcheon Supergroup and Mesozoic Cheongju and Boeun granitoids which intruded it. The Okcheon Supergroup consists mainly of quartzite (Midongsan Formation), meta-calcareous rocks (Daehyangsan Formation, Hwajeonri Formation), meta-psammitic rocks (Unkyori Formation), meta-politic rocks (Munjuri Formation), meta-conglomeratic rocks (Hwanggangni Formation) in the study area, showing a zonal distribution of NE trend. Its' general trend is locally changed into NS to EW trend in and around high-angle fault of NS or NW trend. This study focused on deformation history of the Okcheon Supergroup, suggesting that the geological structure was formed at least by four phases of deformation. (1) The first phase of deformation occurred under ductile shear deformation of top-to-the southeast movement, forming sheath fold or A-type fold, asymmetric isoclinal fold, NW-SE trending stretching lineation. (2) The second phase of deformation took place under compression of NW-SE direction, forming subhorizontal, tight upright fold of M trend in the earlier phase, and formed semi-brittle thrust fault (Guryongsan Thrust Fault) of top-to-the southeast movement and associated snake-head fold in the later phase. (3) The third phase of deformation formed subhorizontal, open recumbent fold through gravitational or extensional collapses which might be generated from crustal thickening and gravitational instability. (4) The fourth phase of deformation formed moderately plunging, steeply inclined kink fold related to high-angle faulting, being closely connected with the local change of NE-trending regional foliation into NS to EW direction of strike in the vicinity of the high-angle fault.