• Title/Summary/Keyword: 운고

Search Result 5, Processing Time 0.018 seconds

Interactive 3D Visualization of Ceilometer Data (운고계 관측자료의 대화형 3차원 시각화)

  • Lee, Junhyeok;Ha, Wan Soo;Kim, Yong-Hyuk;Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.21-28
    • /
    • 2018
  • We present interactive methods for visualizing the cloud height data and the backscatter data collected from ceilometers in the three-dimensional virtual space. Because ceilometer data is high-dimensional, large-size data associated with both spatial and temporal information, it is highly improbable to exhibit the whole aspects of ceilometer data simply with static, two-dimensional images. Based on the three-dimensional rendering technology, our visualization methods allow the user to observe both the global variations and the local features of the three-dimensional representations of ceilometer data from various angles by interactively manipulating the timing and the view as desired. The cloud height data, coupled with the terrain data, is visualized as a realistic cloud animation in which many clouds are formed and dissipated over the terrain. The backscatter data is visualized as a three-dimensional terrain which effectively represents how the amount of backscatter changes according to the time and the altitude. Our system facilitates the multivariate analysis of ceilometer data by enabling the user to select the date to be examined, the level-of-detail of the terrain, and the additional data such as the planetary boundary layer height. We demonstrate the usefulness of our methods through various experiments with real ceilometer data collected from 93 sites scattered over the country.

Development of algorithm for determination of cloud and aerosol in Mie scattering Laser Radar System (Mie 산란 레이저 레이다 시스템을 위한 에어로졸과 구름의 판별 알고리즘 개발)

  • Kim, Sheen-Ja;Lee, Young-Woo;Park, Chan-Bong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.568-570
    • /
    • 2012
  • The algorithm to distinguish cloud from aerosols in the measurements of Laser Radar is developed. This method use the difference of slope between return signals of cloud and aerosols. The parameters achieved from the algorithm are altitude of cloud top, cloud base, and boundary layer.

  • PDF

A Development of the Program for Flight Suitability Distinction and Calculation of Available Sorties (비행 적합성 판별 및 소티수 산출 프로그램 개발)

  • Kim, Young-Rae;Lee, Sang-Chul;Lee, Jin-Sub;Ryu, Kwang-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.105-110
    • /
    • 2011
  • The flight test comes at the end of the aircraft development process and is an unique part. The purposes of the flight test are to evaluate the characteristics of the aircraft and validate its design in the real operating environment. Atmospheric considerations are key elements, when the planner of flight test establishes the flight test planning. The primary objective of atmospheric considerations is to ensure safety of the vehicle. The planning through atmospheric considerations can minimize flight cancellations caused by severe weather. In this paper, we present a program for flight suitability distinction, and develop a program for calculation of available sorties.

A Study on the Predictability of Moist Convection during Summer based on CAPE and CIN (대류가용잠재에너지와 대류억제도에 입각한 여름철 습윤 대류 예측성에 대한 연구)

  • Doyeol Maeng;Songlak Kang
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.540-556
    • /
    • 2023
  • This study analyzed rawinsonde soundings observed during the summer and early fall seasons (June, July, August and September) on the Korean peninsula to examine the utility of the Convective Available Potential Energy (CAPE) and Convective Inhibition (CIN) in predicting the occurrence of deep moist convection and precipitation. Rawinsonde soundings are categorized into two groups based on thermodynamic criteria: high CAPE and low CIN represent a high potential for deep moist convection; low CAPE and high CIN indicate conditions unfavorable for deep convection. A statistical hypothesis test is conducted to determine whether the two groups are significantly different in terms of 12-hour cumulative precipitation, 12-hour mean cloud base, and 12-hour mean mid-level cloud cover. The results, in the case of no-precipitation, reveal statistically significant differences between the two groups, except for the 12-hour mean cloud base during the 21:01-09:00 KST time period. This suggests that the group characterized by high CAPE and low CIN is more conducive to the occurrence of deep moist convection and precipitation than the group with low CAPE and high CIN.

Estimation of Surface Solar Radiation using Ground-based Remote Sensing Data on the Seoul Metropolitan Area (수도권지역의 지상기반 원격탐사자료를 이용한 지표면 태양에너지 산출)

  • Jee, Joon-Bum;Min, Jae-Sik;Lee, Hankyung;Chae, Jung-Hoon;Kim, Sangil
    • Journal of the Korean earth science society
    • /
    • v.39 no.3
    • /
    • pp.228-240
    • /
    • 2018
  • Solar energy is calculated using meteorological (14 station), ceilometer (2 station) and microwave radiometer (MWR, 7 station)) data observed from the Weather Information Service Engine (WISE) on the Seoul metropolitan area. The cloud optical thickness and the cloud fraction are calculated using the back-scattering coefficient (BSC) of the ceilometer and liquid water path of the MWR. The solar energy on the surface is calculated using solar radiation model with cloud fraction from the ceilometer and the MWR. The estimated solar energy is underestimated compared to observations both at Jungnang and Gwanghwamun stations. In linear regression analysis, the slope is less than 0.8 and the bias is negative which is less than $-20W/m^2$. The estimated solar energy using MWR is more improved (i.e., deterministic coefficient (average $R^2=0.8$) and Root Mean Square Error (average $RMSE=110W/m^2$)) than when using ceilometer. The monthly cloud fraction and solar energy calculated by ceilometer is greater than 0.09 and lower than $50W/m^2$ compared to MWR. While there is a difference depending on the locations, RMSE of estimated solar radiation is large over $50W/m^2$ in July and September compared to other months. As a result, the estimation of a daily accumulated solar radiation shows the highest correlation at Gwanghwamun ($R^2=0.80$, RMSE=2.87 MJ/day) station and the lowest correlation at Gooro ($R^2=0.63$, RMSE=4.77 MJ/day) station.