• Title/Summary/Keyword: 우회밸브

Search Result 8, Processing Time 0.022 seconds

울진 3,4호기의 가압기고압력 원자로정지여유도 민감도 분석

  • 손석훈;서호택;정원상;서종태;이상근
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.594-601
    • /
    • 1996
  • 가압기고압력 원자로정지여유도(high pressurizer pressure trip margin)에 영향을 주는 요인들에 대한 민감도 분석을 울진 3,4호기 성능해석코드인 LTCUCN computer code틀 이용하여 수행하였다. 그 결과, 초기 가압기압력, 증기우회제어계통의 quick open지연시간, 터빈우회밸브의 quick opening시간, 원자로출력 감발계통의 용량, 원자로출력감발 제어붕 낙하시간, 가압기 살수작동 설정치 둥이 완전부하상실시 가압기압력을 상승시키는 주요인자임을 알 수 있었으며, 증기우회제어계통 및 가압기살수계통의 용량은 최대 가압기 압력에 미치는 영향이 미미한 것으로 판명되었다. 울진 3,4호기의 참조발전소인 영광 3,4호기의 as-built 자료를 토대로 울진 3,4호기의 원자로정지여유도를 계산한 결과 울진 3,4호기는 완전부하상실사건시 37 psi의 정지여유도를 가질 수 있는 것으로 판단된다. 그러나, 원자로출력감발계통이 있는 ABB-CE type의 울진 3,4호기에서는 완전부하상실사건보다 원자로출력감발계통이 동작하지 않는 부하감발사건이 최대 가압기 압력치를 유발하는 사건이고, 다양한 부하상실사건중에도 운전여유도는 확보하고 있음을 알 수 있었다.

  • PDF

Analysis of Flow through High Pressure Bypass Valve in Power Plant (발전소용 고압 바이패스 밸브 내부 유동해석)

  • Cho, An-Tae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.17-23
    • /
    • 2007
  • In the present work, flow analysis has been performed in the steam turbine bypass control valve (single-path type) for two different cases i.e., case with steam only and case with both steam and water. The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) model and $k-{\varepsilon}$ model are used to each different case as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. The mass flow rate at maximum plug opening condition is compared with the designed mass flow rate. The numerical analysis of multiphase mixing flow(liquid and vapor) is also performed to inspect liquid-vapor volume fraction of bypass valve. The result of volume fraction is useful to estimate both the safety and confidence of valve design.

영광 3호기 자연대류 시험 분석을 통한 TASS 1.0 코드 검증

  • 엄길섭;이병일;김희철;심석구
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.549-555
    • /
    • 1996
  • 실제 발전소의 거동을 정확히 예측하여 코드 내장모델의 적합성을 증명하는 것은 완전계통 분석코드 검증에 필수적이다. 이를 위하여 코드 분석결과와 비교할 만큼 측정정보가 충분한 영광 3호기 자연대류 시험을 선택하여 모의하였다. 사용된 원전계통 분석코드는 KAERI에서 최적 코드로서 개발한 TASS 1.0 코드이며, 운전원의 조치 및 증기우회밸브의 오동작 등이 고려되었다. 분석결과, TASS 1.0 코드가 실제 발전소에서 수행된 자연대류 시험을 모의할 수 있으며, 아울러 최적코드로서 사용될 수 있음을 확인하였다.

  • PDF

Performance Development of Coolant Core for Range Extender Engine Using CFD Simulation (전산유체해석을 통한 RE엔진 냉각수 코어의 성능 개발)

  • Kim, Chang-Su;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2075-2080
    • /
    • 2013
  • A Coolant core for Range Extender engine has been developed using CFD technique. Coolant by-pass has been added to the improved model to reduce temperature near and between exhaust valve. Due to the increased coolant flow-rate both around the second cylinder block and between exhaust valves, improved model shows no significant stagnant flow compared with base model. Finally, the improved model shows improved heat transfer coefficients near exhaust valves, and 5% reduced pressure-drop through the coolant core. Reduced pressure-drop may increase the fuel efficiency by reducing the load of a coolant pump.

A Study on Water Level Control of PWR Steam Generator at Low Power Operation and Transient States (저출력 및 과도상태시 원전 증기발생기 수위제어에 관한 연구)

  • Na, Nan-Ju;Kwon, Kee-Choon;Bien, Zeungnam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.18-35
    • /
    • 1993
  • The water level control system of the steam generator in a pressurized water reactor and its control problems are analysed. In this work the stable control strategy during the low power operation and transient states is studied. To solve the problem, a fuzzy logic control method is applied as a basic algorithm of the controller. The control algorithm is based on the operator's knowledges and the experiences of manual operation for water level control at the compact nuclear simulator set up in Korea Atomic Energy Research Institute. From a viewpoint of the system realization, the control variables and rules are established considering simpler tuning and the input-output relation. The control strategy includes the dynamic tuning method and employs a substitutional information using the bypass valve opening instead of incorrectly measured signal at the low flow rate as the fuzzy variable of the flow rate during the pressure control mode of the steam generator. It also involves the switching algorithm between the control valves to suppress the perturbation of water level. The simulation results show that both of the fine control action at the small level error and the quick response at the large level error can be obtained and that the performance of the controller is improved.

  • PDF

Flame Standing of Magnesium-Steam in Swirl Combustor (와류 연소기에 의한 Mg-Steam 화염 안정화)

  • Ko, Tae-Ho;Lee, Sang-Hyup;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.139-143
    • /
    • 2011
  • 금속분말을 청정 에너지원으로 이용하기 위해 금속분말 소형 연소기의 구현이 필요하다. 이를 위한 기초 연구로서 점화성이 뛰어나면서도 경제적인 수십 마이크로 크기의 마그네슘(Mg) 분말을 대상으로 고온 증기(steam)와의 연소 현상 대해 연구하였다. 본 연구에서는 연소실 내 체류시간 및 혼합 효율을 증가시키기 위해 와류 유동을 연소기에 적용하였고 아르곤(Ar) 이송가스를 이용해 마그네슘 분말을 공급하였다. 안정한 화염을 유지시키기 위하여 이송가스의 유량을 변화시켜 공급되는 마그네슘의 양을 조절하였고, 고온 증기의 공급량은 니들 밸브의 개도를 조정하거나 우회시킨 관로로 증기의 일부를 배출함으로써 조절하였다. 고온의 점화원을 사용하여 증기 분위기 내 마그네슘 분말을 점화시켜, 대기압 환경에서 마그네슘/증기/아르곤의 지속적인 화염을 구현하였다.

  • PDF

Solid Flow Rate and Gas Bypassing with Operating Variables of J-valve in Multistage Annular Type Fluidized Beds (다단 환원형 유동층에서 J-valve의 운전변수에 따른 고체 흐름량 및 기체 우회)

  • Hong, Yoon-Seok;Kang, Gyung-Soo;Park, Joo-Sik;Lee, Dong-Hyun
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.62-68
    • /
    • 2011
  • Hydrodynamic characteristics in multistage annular type fluidized bed (riser: $0.01{\times}0.025{\times}2.8m^3$, J-valve: $0.009{\times}0.015m^2$)were investigated. Glass beads ($d_p=101{\mu}m$, ${\rho}_b=1,590kg/m^3$, $U_{mf}=1.25{\times}10^{-2}m/s$, Geldart classification B) was used as a bed material. Accumulated weight by the electronic balance was measured to determine the solid flow rate in batch-type. In circulation condition, we measured the accumulated weight of particle transported from riser. At the steady state condition, solid circulation rate was calculated from time interval of the heated bed material passing between two thermocouples. Solid flow rate increased with increasing inlet gas velocity ($1.2-2.6U_{mf}$) and the static bed height (z, 0.24-0.68 m) from 2.2 to 23.4 kg/s. However, mean residence time decreased with increasing inlet gas velocity ($1.2-2.6U_{mf}$) and the static bed height (z, 0.24-0.68 m) from 1,438 to 440 s. The solid holdup in the riser was determined by measuring pressure differences according to the riser height. These results showed a similar trend to that of simple exponential decay type except for the top section of the riser. To verify the gas bypassing from top bubbling beds to middle bubbling beds, $CO_2$ gas was injected by tracer gas in constant ratio, and then was measured $CO_2$ concentration in outlet gas by gas chromatography. Gas bypassing occurred below 2.6% which is negligible value.

Operating Characteristics of a Continuous Two-Stage Bubbling Fluidized-Bed Process (연속식 2단 기포 유동층 공정의 운전특성)

  • Youn, Pil-Sang;Choi, Jeong-Hoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.81-87
    • /
    • 2014
  • Flow characteristics and the operating range of gas velocity was investigated for a two-stage bubbling fluidized-bed (0.1 m-i.d., 1.2 m-high) that had continuous solids feed and discharge. Solids were fed in to the upper fluidized-bed and overflowed into the bed section of the lower fluidized-bed through a standpipe (0.025 m-i.d.). The standpipe was simply a dense solids bed with no mechanical or non-mechanical valves. The solids overflowed the lower bed for discharge. The fluidizing gas was fed to the lower fluidized-bed and the exit gas was also used to fluidize the upper bed. Air was used as fluidizing gas and mixture of coarse (< $1000{\mu}m$ in diameter and $3090kg/m^3$ in apparent density) and fine (< $100{\mu}m$ in diameter and $4400kg/m^3$ in apparent density) particles were used as bed materials. The proportion of fine particles was employed as the experimental variable. The gas velocity of the lower fluidized-bed was defined as collapse velocity in the condition that the standpipe was emptied by upflow gas bypassing from the lower fluidized-bed. It could be used as the maximum operating velocity of the present process. The collapse velocity decreased after an initial increase as the proportion of fine particles increased. The maximum took place at the proportion of fine particles 30%. The trend of the collapse velocity was similar with that of standpipe pressure drop. The collapse velocity was expressed as a function of bulk density of particles and voidage of static bed. It increased with an increase of bulk density, however, decreased with an increase of voidage of static bed.