• Title/Summary/Keyword: 우주용 냉각기

Search Result 30, Processing Time 0.029 seconds

Development of Bulging Process for Regenerative Cooling Nozzle of Liquid Rocket Thrust Chamber (액체로켓 연소기 재생냉각형 노즐의 벌징 공정 개발)

  • Ryu, Chul-Sung;Choi, Hwan-Suk
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.103-109
    • /
    • 2008
  • A study has been conducted on the bulging process of regenerative cooling nozzle which is essential for the manufacturing of liquid rocket thrust chamber. Tension tests have been performed for the material to be used for the development of the bulging process and mechanical properties are obtained by the test. Two or three bulging tools were required to complete the bulging process. The necking of the material was a major failure encountered in the bulging process and a research has revealed that grain size of the material has considerable effect on its occurrence. The presently developed bulging process with a controlled grain size material has been successfully applied to the manufacturing of subscale and 30-tonf full scale regeneratively cooled nozzle while demonstrating the applicability and usefulness of the presently developed bulging process.

  • PDF

Hydraulic Characteristics of Branching and Merging of Channels in Regenerative Cooling Passage in Liquid Rocket Combustors (채널의 분기 및 병합이 있는 액체로켓 연소기 재생냉각 유로에서의 수력학적 특성)

  • Kim, Hong-Jip;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1087-1093
    • /
    • 2008
  • Regenerative cooling passage to guarantee the thermal survivability in high performance rocket engine combustors could have complex configurations of the branching/merging of channels and flow turning, etc. By applying the classical hydraulic coefficients which can be found in the literature according to the flow conditions, hydraulic characteristics in regenerative cooling passages can be obtained effectively through dividing the pressure loss into friction loss and local resistance loss. Satisfactory agreement has been obtained by comparing the present results with experimental measurement of water flow test. In addition, the present results were in good agreement with CFD results when the actual coolant, kerosene was used. Therefore, the application of the present method is expected to be useful to design regeneratively cooled combustors.

Comparisons of Life Prediction Method of Copper Alloy of Regenerative Cooling Chamber for Thrust Chamber (액체로켓 연소기 재생냉각 챔버용 구리합금의 피로수명 예측식 비교)

  • Lee, Keum-Oh;Ryu, Chul-Sung;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.90-97
    • /
    • 2010
  • A study about the fatigue life of copper alloy which is used in inner jacket of regenerative cooling chamber of liquid rocket engine has been performed. Mechanical properties of the material and fatigue life have been taken from tensile tests and low-cycle fatigue tests at room temperature and several elevated temperatures. Original universal slopes method, modified universal slopes method, Mitchell's method, Baumel and Seeger's method, and Ong's method have been used for predicting the fatigue data. It was found that the novel life prediction method should be developed for the copper alloys since almost all data have not been predicted well with the widely used methods.

Evaluation of Formability of Copper Alloy for Regenerative Cooling Chamber before and after Heat Treatment (재생냉각 챔버 제작용 구리합금의 열처리 전후 성형성 평가)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.12
    • /
    • pp.1201-1208
    • /
    • 2009
  • Dome stretching tests and tension tests were performed to evaluate the formability of a copper alloy used for manufacturing the regenerative cooling chamber. The test specimens were prepared to investigate the effect of heat treatment and direction of specimens on the formability. The test results show that forming limit values are increased by the heat treatment of the material but the variation of the forming limit values by manufacturing direction is negligible compared to the heat treatment effect, and forming limit values are also different according to the test methods. These results indicate that the high temperature heat treatment of the material before bulging is a very important process to deform the inner cylindrical structure of the regenerative cooling chamber into a nozzle shape by the bulging process without necking or fracture and the test methods also have a great effect on a evaluation of the formability. The forming limit diagram obtained in this study would be utilized to the design of regenerative cooling chamber nozzles.

Verification of Launch Vibration and Shock Isolation Performance for Spaceborne Compressor Vibration Isolator with SMA Mesh Washer (형상기억합금 메쉬 와셔를 이용한 우주용 냉각기 진동절연기의 발사 진동 및 충격 저감 성능검증)

  • Lee, Myeong-Jae;Han, Je-Heon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.7
    • /
    • pp.517-524
    • /
    • 2014
  • Micro-vibration induced by on-board equipments such as fly-wheel and cryogenic cooler with mechanical moving parts affects the image quality of high-resolution observation satellite. Micro-vibration isolation system has been widely used for enhancing the pointing performance of observation satellites. In general, the micro-vibration isolation system requires a launch locking mechanism additionally to guarantee the structural safety of mission payloads supported by the isolation system with low stiffness under launch environment. In this study, we propose a passive launch and on-orbit vibration isolation system using shape memory alloy mesh washers for the micro-vibration isolation of spaceborne compressor, which does not require the additional launch locking mechanism. The basic characteristics of the isolator were measured in static and free vibration tests of the isolator, and a simple equivalent model of the isolator was proposed. The effectiveness of the isolator design in a launch environment was demonstrated through sine vibration, random vibration and shock tests.

Experimental Performance Verification of Energy-Harvesting System Using the Micro-vibration of the Spaceborne Cryocooler (우주용 냉각기의 미소진동을 이용한 에너지 수확 시스템의 실험적 성능검증)

  • Jung, Hyunmo;Kwon, Seongcheol;Oh, Hyunung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.15-22
    • /
    • 2016
  • The on-board appendages of satellites with mechanical moving parts such as the fly-wheel, the control-moment gyro, the cryocooler, and the gimbal-type directional antenna can generate an undesirable micro-vibration disturbance, which is one of the main causes of the image-quality degradation that affects high-resolution observation satellites. Consequently, the isolation of the micro-vibration issue has always been considered as salient, and the micro-vibration is therefore the focus of this study wherein a complex system that can provide the dual functions of a guaranteed vibration-isolation performance and electrical energy harvesting is proposed. The vibration-isolation and energy-harvesting performances of the complex system are predicted through a numerical analysis based on the characteristics that are obtained from component-level tests. In addition, the effectiveness of the complex system that is proposed in this study is verified through an assembly-level functional-performance test.

Formability Evaluation of a Copper Alloy for Regenerative Cooling Thrust Chamber (재생냉각 연소기 챔버 제작용 구리합금의 성형성 평가)

  • Ryu, Chul-Sung;Lee, Keum-Oh;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.939-945
    • /
    • 2009
  • The dome stretching tests and tension tests have been performed to obtain a forming limit curve(FLC) for the copper alloy which is used for manufacturing the regenerative cooling thrust chamber. For experimental investigation of the forming limit curve, we have used in-plane tension specimen to obtain tension-compression strain state as well as out-of-plane specimen to obtain tension-tension strain state through dome stretching test. All specimens were divided into longitudinal and transverse directions according to the orientation of test specimen. The test results showed that in the tension-tension region, copper alloy revealed a maximum major strain of 62.3% and a maximum minor strain of 58.6%. In the tension-compression region, the maximum major strain and the maximum minor strain were measured to be 60.5% and 25.8%, respectively.

Development of 2-ton thrust-level sub-scale calorimeter (추력 2톤급 축소형 칼로리미터 개발)

  • Cho, Won-Kook;Ryu, Chul-Sung;Chung, Yong-Hyun;Lee, Kwang-Jin;Kim, Seung-Han;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.107-113
    • /
    • 2005
  • A calorimeter of 2-ton thrust level rocket engine chamber has been developed to measure the wall heat flux. The liner of the chamber is made of copper-chromium alloy to maximize the heat transfer performance and structural strength. 1-D design code based on empirical correlations has been used for the prediction of the global thermal characteristics while 3-D CFD has been applied for the verification of local cooling performance. The predicted average wall heat flux at the throat is 43 $MW/m^{2}$ for the combustion chamber pressure of 53 bar. The chamber structure is confirmed to be safe at the pressure of 150 bar through 2-D stress analysis and measurement of the strain of the test species. Finally, the test of pressurizing the calorimeter chamber has been performed with water at the pressure of 150 bar in room temperature environment. No thermal damage has been detected after the hot-fire test in the test nozzle of same cooling performance with the developed calorimeter though the measured throat heat flux is higher than the design value by 10%.

THE DESIGN OF QUASI-OPTICS FOR DUAL-CHANNEL SIS RECEIVER (100GHz/150GHz 대역용 이중채널 SIS수신기의 준광학계 설계)

  • 박종애;한석태;김광동;김효령;정현수;김태성;이창훈;조세형;양종만
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.1
    • /
    • pp.67-79
    • /
    • 1997
  • We have designed the quasi optics of the dual channel receiver to observe the radio sources with 100GHz-band and 150GHz-band simultaneously. We introduced the general quasi optics and the relation between the Gaussian beam and thin lens approximation. We determined the parameters of the quasi optic components to match the beam waist at cassegrain focus with that of feed horn well.

  • PDF

Development of Propellant for Turbopump Pyro Starter (터보펌프 시동기용 추진제 개발)

  • Song, Jong-Kwon;Choi, Sung-Han;Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.7-10
    • /
    • 2009
  • The development and evaluation of solid propellant were performed for the turbopump pyro starter, which start up the liquid propellant rocket engine for the Space Launch Vehicle (SLV). Requirements for the turbopump pyro starter propellant include the production of low flame temperature, low burning rate and nontoxic gas to protect the mechanical corrosion or air pollution. This study describes the development of the solid propellant composition which is based on PCP binder. DHG (Dihydroxy glyoxime), which has advantages of oxygen balance and ignition, was used as coolant. The mechanical properties and burning rate of the propellants were measured. Finally, static fired test was performed to prove the possibility of development.

  • PDF