• Title/Summary/Keyword: 우주용 냉각기

Search Result 30, Processing Time 0.025 seconds

Spaceborne Cryogenic Cooler Development Status (우주용 극저온 냉각기 기술개발동향)

  • Kim, Hong-Bae;Lee, Seung-Yup;Lee, Won-Beom;Kim, Gyu-Sun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.48-58
    • /
    • 2009
  • Since 1960s, cryogenic cooling technologies has been adopted in the development of spacecraft with components that must be cooled to cryogenic temperatures of 2 to 150 K. In recent years this technology has been a substantial growth in the emerging number of programs that include such spacecraft to service scientific, military, and weather observation missions. The cooling of optics and detectors to reduce signal noise in infrared (IR) telescopes is the principal applications of cryogenic cooling technologies. The choice of cooling technologies depends on the desired temperature level, the amount of heat to be removed, and the required operating life. This paper will present the status of modern cryogenic cooling technologies especially for space application.

  • PDF

Validation of Structural Safety on Multi-layered Blade-type Vibration Isolator for Cryocooler under Launch Vibration Environment (적층형 블레이드가 적용된 냉각기용 진동절연기의 발사환경에서의 구조건전성 검증)

  • Jeon, Young-Hyeon;Ko, Dai-Ho;Jo, Mun-Shin;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.575-582
    • /
    • 2018
  • The spaceborne cooler is applied to cool down of the focal plane of the infrared detector of the observation satellite. However, this cooler induces unnecessary micro-jitter which can degrade the image quality of the high-resolution observation satellite. In this study, we proposed a multi-layered blade type vibration isolator to attenuate micro-vibration generated from a spaceborne cooler, while assuring structural safety of the cooler under severe launch loads without an additional launch-lock device. The blade of the isolator is formed with multi-layers in order to obtain durability against fatigue failure and an adhesive is applied between each layers for granting high damping capability under launch vibration environment. In this study, the basic characteristics of the isolator were measured using the free-vibration test. The effectiveness of the isolator design was demonstrated by launch vibration test at qualification level.

Thermal Design of Cryogenic Compressor with Strategies for Keeping Performance of Micro-vibration Isolation System (미소진동저감용 진동절연기의 성능유지를 위한 극저온 냉각용 압축기 조립체 열제어 설계)

  • Oh, Hyun-Ung;Lee, Kyung-Joo;Jeong, Suk-Yong;Shin, So-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • Spaceborne pulse tube-type cryogenic compressors are widely used for space applications. To guarantee cooling performance of the compressor, mission life time and micor-vibration stability, suitable thermal control of compressor is required. Micro-vibration of the compressor is the one of the sources to degrade the pointing performance of observation satellite. In the present work, on-orbit thermal design of compressor in order not to degrade the performance of micro-vibration isolation system keeping the thermal control performance has been proposed and investigated through thermo-mechanical analysis.

A Numerical Study on the Combustion Characteristics in a Liquid Rocket Engine with Film Cooling Effect (막냉각 효과를 고려한 액체로켓 엔진의 연소 특성에 관한 연구)

  • Byeon,Do-Yeong;Kim,Man-Yeong;Baek,Seung-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.8
    • /
    • pp.69-76
    • /
    • 2003
  • For stable combustion and safety of a structure of the propulsion system, a cooling system to the liquid rocket engine should be incorporated. In this study, Eulerian-Lagrangian scheme for two phase combustion, nongray radiation and soot formation effect, and film-wall interaction have been introduced to study the effect of film cooling. After briefly introducing the governing equation, combustion characteristics with change of wall temperature has been investigated by varying such parameters as fuel mass fraction for film cooling, diameter of the fuel droplet, overall mixture fraction of oxygen to fuel. Also, radiative heat flux is compared with the conductive one at the combustor wall.

추력 30톤급 연소기의 냉각 성능

  • Cho, Won-Kook;Lee, Soo-Yong;Cho, Gwang-Rae
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.197-204
    • /
    • 2004
  • A design of regenerative cooling system of 30 ton level thrust combustion chamber for ground test has been performed. The 1-D design code has been validated by comparing with the heat flux of the NAL calorimeter for high chamber pressure and water-cooling performance of the ECC engine of MOBIS. The present design code has been confirmed to predict accurately the heat flux and water-cooling performance for high chamber pressure condition. The maximum hot-gas-side wall temperature is predicted to be about 720 K without thermal barrier coating and the coolant-side wall temperature is less than the coking temperature of RP-1. The coolant temperature rises nearly 100 K with thermal barrier coating when Jet-A1 is used as coolant.

  • PDF

The Design and Hot-firing Tests of a regenerative-cooled Sub-scale Combustor (재생냉각 축소형 연소기의 설계 및 연소시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Lim, Byoung-Jik;Kim, Hong-Jip;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.141-149
    • /
    • 2007
  • It was carried out hot-firing test with a regenerative-cooled sub-scale combustor which was applied regenerative-cooling, film cooling and thermal barrier coating. Test results showed that cooling methods used in the combustor play an full role in the operation of the combustor under the design condition but it is occurred high frequency combustion instability due to unsteady flow of fuel by structural support ring inserted in fuel manifold. The flow pattern of fuel was improved by excluding the ring and it will be carried out additional hot-firing test to verify the combustion stability of modified combustor.

  • PDF

On-orbit Micro-vibration Isolation Performance Verification for Spaceborne Cryocooler Passive Vibration Isolator Using SMA Mesh Washer (SMA 메쉬 와셔를 적용한 우주용 냉각기 수동형 진동절연기의 궤도 미소진동 절연성능 검증)

  • Kwon, Seong-Cheol;Jeon, Su-Hyeon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.24-32
    • /
    • 2015
  • Pulse tube-type spaceborne cryocooler is widely used to cool down the infrared sensor of observation satellites. However, such cryocooler also generates micro-vibration which is the one of main sources to seriously affect the image quality during its on-orbit operation. Therefore, to comply with the mission requirement of high resolution observation satellite, additional technical efforts have been required. In this study, we proposed a spaceborne cryocooler passive vibration isolator using SMA mesh washer, which guarantees the structural safety of both the micro-vibration disturbance source and itself under harsh launch vibration loads without an additional holding mechanism and the micro-vibration isolation performance on orbit environment. To verify the micro-vibration isolation performance of the proposed vibration isolator, we performed the micro-vibration isolation measurement test using the dedicated micro-vibration measurement device proposed in this study.

Design and Thermal Analysis of Focal Plane Assembly Cooling Unit of Earth Observation Camera (저궤도 지구관측위성 주탑재체 냉각유닛 설계와 열해석)

  • Seo, Joung-Ki;Cho, Hee-Ken;Lee, Deog-Gyu;Lee, Seung-Hoon;Choi, Hae-Jin;Kang, Seok-Bong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.580-585
    • /
    • 2009
  • Thermal analysis and design of FPA(Focal Plane Assembly)-CU(Cooling Unit) for Earth observation camera is performed. FPA-CU is the first cooling device for a spacecraft which is designed and manufactured by its own technology in Korea. FPA-CU has a special feature, TBM(Thermal Buffer Mass) which is discriminated from typical cooling devices using heat pipes and radiator. TBM can be regarded as a thermal energy reservoir and it shows thermally transient characteristics, which make it difficult to design the size and shape of TBM. In current study, a method to determine the volume and the size of TBM is proposed and validated. The transient thermal analysis for FPA-CU for 5 operational scenarios is performed and validates the final design of FPA-CU (Radiator,TBM, Heat pipe I/F). In case of an abnormal operation of a heat pipe among three radiator heat pipes, the temperature of FPA can be increased $3{\sim}4^{\circ}C$ according to the numerical simulation.

Effect of Injector Cooling on Ignition of Cryogenic Spray (분사기 냉각이 초저온 분무의 점화에 미치는 영향)

  • Kim, Do-Hun;Lee, Jin-Hyuk;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.222-229
    • /
    • 2012
  • The cooling of a injector effects on the vapor pressure of cryogenic oxidizer spray, and it decides the phase transition point at the ignition process, when the combustion chamber pressure increases drastically. The phase transition of oxidizer spray affects the ignition characteristics, and several ignition tests with the LOx/$GCH_4$ uni-element coaxial swirl injector was performed in the different initial temperatures of oxidizer injector, in order to investigate the effect of injector cooling on the ignition transient characteristics. At the transition point of oxidizer phase, where the combustion chamber pressure increased over the LOx vapor pressure, the temporary quenching phenomenon of the flame occurred. The lower temperature of chilled down injector and tubing tends to move up the phase transition earlier.

Optimized Brazing Conditions of Regenerative Cooling Thrust Chambers (재생 냉각용 연소기의 최적 브레이징 조건)

  • Nam,Dae-Geun;Hong,Seok-Ho;Han,Gyu-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.7
    • /
    • pp.112-117
    • /
    • 2003
  • The brazing of copper alloys and duplex stainless steels is an indispensable manufacturing technology for thrust chambers with regenerative cooling. For setting up the optimized brazing conditions, C18200 copper alloy plate with machined cooling channels and S31803 stainless steel plate are brazed with AMS4764 filler metals of which thickness is 50${\mu}m$ and 80${\mu}m$ They are tested by X-ray radiography, strength/leakage and fracture tests, and fracture surface inspection. The results obtained by the suggested conditions are that the specimen brazed with filler metal thickness of 50${\mu}m$ has good strength properties and brazed zone. However, the specimen with filler metal thickness of 80${\mu}m$ has the brazed zone with cooling channel obstruction and enlargement.