• Title/Summary/Keyword: 우주방사선

Search Result 112, Processing Time 0.032 seconds

우주방사선폭풍탐사선 탑재체 PD (Proton Detector, 양성자 검출기)의 개념 설계

  • Son, Jong-Dae;Lee, Yu;O, Su-Yeon;Min, Gyeong-Uk;Lee, Dae-Yeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.213.1-213.1
    • /
    • 2012
  • 우주방사선폭풍탐사선 (Space Radiation Storm probe: SRSP)에 탑재할 과학측정 장비들 중의 하나로 추진 중인 PD는 우주방사선 환경에서의 태양활동에 따른 고에너지 하전입자들 특히 proton의 에너지와 flux에 대한 정보를 획득하고 더불어 다른 고에너지 입자의 효과까지 포함하는 Linear Energy Transfer (LET)을 측정하기 위한 탑재체이다. 본 연구팀은 PD의 사양을 결정하기 위해서 GEANT4를 사용하여 전산모사를 수행하였으며, proton의 경우 우주 방사선 환경에서의 태양활동에 따른 고에너지 영역을 고려하여 0.1 ~ 1000 MeV 범위에서 전산 모사를 수행하였다. 본 연구팀은 특히 PD의 에너지 범위를 0 MeV ~ 5 MeV, 5 MeV ~ 10 MeV, 10 MeV ~ 20 MeV, 20 MeV ~ 35 MeV, 35 MeV ~ 52 MeV, 52 MeV ~ 72 MeV, 72 MeV 이상으로 총 7개의 channel를 결정하고 Al의 blocking material을 사용하여 검출하려는 에너지 범위를 조절한다. 또한 최적의 채널을 결정하여 silicon detector를 사용한 탑재체의 개념 설계를 실시하였다. 설계된 PD로부터 방사선대에서의 proton를 측정함으로써 태양기원 고에너지 입자에 대한 포획 및 쇠퇴에 대한 이해를 도울 것이다.

  • PDF

Analysis of Dose by Items According to Act on Safety Control of Radiation Around Living Environment (생활주변방사선안전관리법 시행에 따른 항목별 선량 분석)

  • Jeong, Cheonsoo;Oh, Hyunji;Lee, Jieun;Jo, Sumin;Park, Sohyun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.6
    • /
    • pp.377-381
    • /
    • 2013
  • The study attempted to analyze items presented in Act on safety control of radioactive rays around living environment, which has been recently enacted. The test items have been divided into cosmic rays, cosmic rays, terrestrial radiation, and byproduct, etc., and the selected locations for measurement included an airplane at 8000m in the air, mountainous area at 1000m above sea level, 15m-underground building, construction site, and seashore at 0m altitude. The test showed that, based on cosmic rays, plane at 8000m in the air had 4.91mSv/y of effective dose per year. The mountainous area at 1000m above sea level, which was chosen to measure cosmic rays and terrestrial radiation, was measured 0.35mSv higher than the seashore at 0m in altitude due to the effect of cosmic rays and terrestrial radiation from the greater height above sea level. The construction site, chosen as a location to measure byproduct, showed the highest value among the items with 6.66mSv, which is as 10times high as that of a completed building. The seashore at 0m in altitude had 5.96mSv, and, 15m-underground building, based on terrestrial radiation, was the lowest with 4.91mSv. This suggests that, despite the assumption that terrestrial radiation will have greater effect deeper underground, it did not affect inside the building significantly. This study showed that the items presented in Act on safety control of radioactive rays around living environment were not close to effective dose limit for radiation workers proposed by ICRP. However, they were between 4 and 7 times higher than that for general public. This suggests that there should be continuous research on and attention to Safe Management of Daily Surrounding Radiation Act, which is still at its beginning stage.

Preliminary Study on Applicability of Accumulate Personal Neutron Dosimeter for Cosmic-ray Exposure of Aviators (운항승무원의 우주방사선 피폭 평가에 있어 누적형 개인 중성자 선량계의 적용가능성 예비 연구)

  • Kim, Hyeong-Jin;Chang, Byung-Uck;Byun, Jong-In;Song, Myeong Han;Kim, Jung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.1
    • /
    • pp.44-51
    • /
    • 2013
  • ICRP recommended that cosmic ray exposure to the pilot and cabin crew would be considered as an occupational exposure due to their relatively high exposure. Since 2012 with the Act No. 10908 (Natural radiation management), the guideline of cosmic ray exposure to the pilot was established in Korea. The applicability of the solid-state nuclear track detector for personal dose assessment of pilot and cabin crew was evaluated. Dose linearity and angle dependence of dosimeters to the neutron were evaluated by $^{252}Cf$ neutron emitting source. The track density has a good agreement with the dose ($r^2$=0.99) and highly dependent on the degree of an angular of the dosimeter to the neutron source. In addition, the dosimeters (SSNTD) were exposed to cosmic ray in an aircraft during its cruising for more than two months in collaboration with Airline Pilots Association of Korea. Although the correlation between the track density from aircraft cruising altitude and expected neutron dose is low, however RSNS dosimeter could be used for personal neutron dosimeter. For application of RSNS as a personal dosimeter for pilot and cabin crew, additional studies are required.

ICT Device Impacts and Development Trends on Cosmic Radiation Environment (우주방사선 환경 ICT 소자 영향 및 개발 동향)

  • Yi, Y.;Jeong, S.K.;Hwang, I.;Yang, Y.S.;Lee, M.L.;Suh, D.
    • Electronics and Telecommunications Trends
    • /
    • v.37 no.2
    • /
    • pp.21-29
    • /
    • 2022
  • Cosmic radiation environments having extremely high-energy particles and photons cause severe malfunctions of electrical components in space and terrestrial regions. In this study, we revisit basic knowledge on radiation effects in ICT electrical devices, such as single event effect, total ionizing dose, and displacement damage. To avoid such soft errors and system failures, we introduce essential technical approaches from the perspectives of materials, layouts, circuits, and systems, including current research trends. By considering several techniques and Space EEE part standards, we suggest possible directions that can invoke New Space Era technology.