• Title/Summary/Keyword: 우주발사체추진기관

Search Result 80, Processing Time 0.025 seconds

Liquid Oxygen Filling System of Propulsion System Test Complex(PSTC) for KSLV-II (한국형발사체 추진기관시스템 시험설비(PSTC) 산화제 공급 시스템)

  • Lee, Janghwan;Choi, Bongsu;Kim, Yongwook;Cho, Kiejoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1184-1187
    • /
    • 2017
  • The space launch vehicle needs the verification of each stage's propulsion system. The Propulsion System Test Complex(PSTC) is constructed for developing KSLV-II in the Naro space center. Hydraulic and pneumatic system of PSTC should supply propellants and various gases to propulsion system module according to required condition. This paper introduces liquid oxygen filling system of PSTC.

  • PDF

무독성 상온저장성 산화제 사용이 발사체 속도증분에 미치는 영향

  • Ha, Seong-Eop;Mun, In-Sang;Lee, Su-Yong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.148.1-148.1
    • /
    • 2012
  • 로켓 혹은 우주발사체의 주엔진에는 대부분 연료와 산화제를 연소시켜 나오는 에너지를 사용하는 화학로켓이 주종을 이루어 왔다. 이러한 로켓엔진에서 그동안 연료로는 수소계, 탄화수소계, 아민계 등 다양한 화학물질이 사용되어 왔으나, 산화제로는 강한 산화성을 나타내면서 밀도가 높은 몇몇 물질만이 제한적으로 사용되어져 왔으며, 최근에는 주로 액체산소(LOx)와 사산화질소(N2O4)가 사용되고 있다. 그러나 산화제 중 액체산소는 극저온이면서 상대적으로 밀도가 낮고, 사산화질소는 강한 독성을 지니고 있으며 액체로 존재하는 구간이 좁아 연구 목적의 소형발사체를 구현하는 것에는 많은 어려움이 있다. 이러한 이유로 최근 소형발사체 개발분야에서는 상온저장성이면서 친환경적인 과산화수소(H2O2)와 아산화질소(N2O)를 산화제로 활용하는 것에 대한 관심이 고조되고 있으나, 대형 추진기관을 개발하는 연구자들로부터는 액체산소를 사용할 때 보다 엔진 자체의 비추력이 상대적으로 낮다는 이유로 활용이 외면되어 온 것이 사실이다. 본 연구에서는 엔진 자체의 추진성능 보다는 사실상 발사체의 목적이라고 할 수 있는 추진단 속도증분을 성능의 지표로 삼아 평가하였으며, 결과를 통하여 과산화수소와 아산화질소의 높은 밀도가 엔진의 낮은 비추력을 충분히 보상할 수 있음을 보였다. 과산화수소와 아산화질소는 교육/연구용 소형발사체 구성에 충분히 활용가능한 산화제이며, 실제 발사에서 충분한 비행성능을 기대할 수 있는 물질로 평가할 수 있다.

  • PDF

Evalution of reliability for propulsion system of launch vehicle (우주발사체 추진기관의 신뢰도 평가)

  • Jo, Sang-Yeon;Kim, Yong-Uk;O, Seung-Hyeop;Park, Chan-Bin
    • 시스템엔지니어링워크숍
    • /
    • s.4
    • /
    • pp.155-158
    • /
    • 2004
  • In executing the large scale national project, such as development of space launch vehicle, it is most important to guarantee the technological reliability. However the reliability analysis of launch vehicle is different from other mass product goods because of the limitation of budget and number of tests. In this study, the reliability analysis technique of the propulsion system, which is one of the major sub-systems of launch vehicle is illustrated applied to the liquid rocket engine of KSR-Ⅲ.Ȁ

  • PDF

Evaluation of reliability for propulsion system of launch vehicle (우주발사체 추진기관의 신뢰도 평가)

  • Cho, S.Y.;Kim, Y.W.;Oh, S.H.;Park, C.B.
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.61-66
    • /
    • 2005
  • In executing the large scale national project, such as development of space launch vehicle, it is most important to guarantee the technological reliability. However the reliability analysis of launch vehicle is different from other mass product goods because of the limitation of budget and number of tests. In this study, the reliability analysis technique of the propulsion system, which is one of the major sub-systems of launch vehicle is illustrated and applied to the liquid rocket engine of KSR-III.

  • PDF

Characteristic Research of Electromechanical Actuation System for Launch Vehicle Thrust Vector Control (발사체 추력벡터제어용 전기-기계식 구동장치시스템 특성 연구)

  • Min, Byeong-Joo;Choi, Hyung-Don;Kang, E-Sok
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.164-170
    • /
    • 2007
  • In this paper, the development results of electromechanical TVC actuation system is described in the aspect of design, analysis, manufacturing and test. The kinds of prime power for TVC actuation system is classified by the variety of propulsion system of launch vehicle. The electric power by battery is the sole candidate for prime power of TVC actuation system at the view point of feasible domestic infra technologies for the present. The characteristic analysis study is performed between electromechanical and electrohydraulic actuation system with respect to power efficiency, performance and weight efficiency. The electromechanical actuation system has superiority of power and weight efficiency according to less opportunity of power conversion process.

  • PDF

Development of the KSLV-I KM Case Manufacturing Process (KSLV-I KM 연소관 제작 공정 개발)

  • Kim, Joong-Suk;Lee, Won-Bok;Cho, In-Hyun;Kil, Gyoung-Sub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.193-196
    • /
    • 2007
  • The motor case for the KSLV-I KM is the first satellite launch vehicle ever to be developed by Korea to deliver the 100 kg class satellite into Earth's low orbit. This SLV is made of two stages, and the 2nd stage is made of solid rocket motor. The motor case of the KM is made of all composite materials except for the interface structures. Manufacturing process for the motor case such as insulation, filament winding for the motor case, fabrications for the interface structures will be discussed in this paper.

  • PDF

우주발사체용 터보펌프 액체추진기관 시스템 분석

  • Seo, Kyoun-Su;Joh, Mi-Ok;Choi, Young-In;Hong, Soon-Do;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • Liquid rocket engine system is classified into an engine of pressurization and turbo pump type by the way of fuel fed-supporting system. In the KSR-III sounding rocket, an engine of pressurization type was used, but there was lots of technical problems to be solved for a use as the first stage engine of space launch vehicle. So, an engine of turbo pump type was required to be developed to overcome the technical limitation of liquid rocket engine. In this research, the analysis of propellant of Kerosine-LOX and methane-LOX which are noticed as a future propellant was carried out for the purpose of studying the basic characteristics. And to review the basic characteristics of an engine of turbo pump type, among the sizing variant of the space launch vehicle, the ways of injecting a satellite to a direct orbit and transient orbit were discussed in this paper.

  • PDF

The Study Trend and Problems of Propulsion System in a Zero-gravity Environment (무중력 환경에서 추진기관의 문제점 및 연구 동향)

  • Kil, Gyoung-Sub;Lim, Ha-Young;Lee, Kyung-Won;Cho, In-Hyun
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.8 no.1
    • /
    • pp.96-103
    • /
    • 2010
  • The propulsion systems such as upper stages of launch vehicles, orbiters, spacecrafts have to operate in the zero gravity environment. Because the flight condition where the vehicle undergoes is different from the normal gravity state, many studies have been being in progress. Fluid behavior in the zero gravity condition is differently shown in the normal gravity state because the importance of the intermolecular force, such as adhesion, cohesion, and surface tension is enlarged. In this paper, we investigate the characteristic of fluid behavior and describe effects and problems on the liquid propulsion system due to these fluid behavior. We also check which studies are in progress in order to solve these problems.

  • PDF

KSLV 추진기관 종합시험설비 피해 사고 예측 모델 해석

  • Lee, Jung-Ho;Kang, Sun-Il;Yu, Byung-Il;Kim, Yong-Wook;Cho, Sang-Yeon;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.163-170
    • /
    • 2005
  • According to the KSLV program of KARI, it is planed to develop various launch vehicle and satellite 10 years hereafter. Large-scale test facilities, such as ReTF and PTA-II, are needed to fulfill this launch vehicle/satellite development project. The authors intend to arrange and describe various indexes that are needed in test facility design, construction and operation process. This technical paper is describing model analysis of damage prediction of accident in KSLV Integrated Propulsion System Test Facility based on propellant storage quantity and layout. In addition, the result can be used to produce safer design of test facility.

  • PDF

Development of 500 Kgf Thrust Liquid Propellant Rocket Engine (추력 500 Kgf 액체추진제 로켓엔진 개발)

  • 정동호;조용재;정규상
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.3-10
    • /
    • 1997
  • 본 연구에서는 추력 500 Kgf의 액체 추진기관을 설계, 제작 및 연소시험을 수행하여 연소 특성을 살펴보았다. 추진제로는 우주발사체 Booster용으로 폭넓게 사용되는 탄화수소계 연료인 kerosene과 산화제로 취급이 용이하고 저장 특성을 지닌 98 % White Fuming Nitric Acid(WFNA)를 사용하였고, 엔진 점화를 위해 WFNA와 접촉 발화성 (Hypergolic)을 갖는 Furfuryl Alcohol/Aniline 혼합액을 사용하였다. 로켓엔진은 20 Kgf/$cm^2$의 연소실 압력으로 500 Kgf의 평균 추력을 내도록 설계되었고, 연소실벽을 고온 연소가스로 부터 보호하기 위해 Film Cooling 방식을 적용하였다.

  • PDF