• Title/Summary/Keyword: 우주발사체(space launch vehicle)

Search Result 292, Processing Time 0.022 seconds

Analysis of Safety Regulation and Chemical Reactivity of Hypergolic Propellant (접촉점화성 추진제 안전기준 및 상호반응성 분석)

  • Eungwoo Lee;Ahntae Shin;Sangyeon Cho;Byeongmun Park
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.108-115
    • /
    • 2023
  • Although hydrazine is an excellent liquid propellant, caution is required during storage and handling due to its high toxicity and reactivity. Safety guidelines should be established in consideration of the chemical reactivity by unintended leakage. In this study, the status of hydrazine facilities at launch site and safety standards for storing and handling were investigated and then, the reactivity between chemicals and hydrazine was analyzed. As a result of the analysis, hydrazine has reactivity with the exception of fuel oil. This paper emphasizes the imperative nature of constructing a dedicated hydrazine storage facility. Ensuring compatibility between hydrazine and the materials used in storage containers and handling equipment is crucial to prevent undesired reactions that could compromise safety. It was intended to be used as basic data to secure the range safety when handling hydrazine.

Prediction of Preliminary Pogo Instability on a Space Launch Vehicle (예비설계 단계 우주발사체의 공급/추진계 모델을 이용한 포고 불안정성 예측)

  • Lee, SangGu;Sim, JiSoo;Shin, SangJoon;Seo, Yongjun;Ann, Sungjun;Song, Huiseong;Kim, Youdan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.64-72
    • /
    • 2017
  • The longitudinal dynamic instability which can occur in the fueling process of a space launch vehicle is called pogo. It is caused by coupling between the fuselage and propulsion system and they would be formed as a closed-loop system. so that the amplitude of the response may increase or decrease. In this paper, a mathematical model which is applicable to the systematic pogo analysis of a general launch vehicle is developed for an example of space shuttle. The formulations are composed of the linearized second-order differential equation for the propulsion system, and of the pressure, weight displacement, and generalized displacement. Those are important parameters for pogo analysis, are derived through eigenvalue analysis. By the formulation suggested in this paper, it is expected that mathematical modeling method of the pogo system can be obtained and systematic pogo stability analysis for any launch vehicle will be enabled.

Performance Analysis of Powered Explicit Guidance for Satellite Launch Vehicle (Powered Explicit Guidance 알고리듬의 위성발사체 유도 성능 분석)

  • Song, Eun-Jung;Roh, Woong-Rae;Cho, Sang-Bum;Park, Chang-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.874-883
    • /
    • 2008
  • This study considers powered explicit guidance, one of the closed-loop guidance laws for satellite launch vehicles. The guidance algorithm employed here does not include the iterative procedure of the original algorithm. Also, the single-target algorithm to treat the general time-varying thrust profiles is described. The computer simulations for the 6-DOF launch vehicle model are performed to investigate the orbit injection accuracy of the guidance algorithm in the nominal/off-nominal flight conditions.

A Study on Prediction of Acoustic Loads of Launch Vehicle Using NURBS Curve Modeling (넙스(NURBS) 곡선 모델링을 이용한 발사체 음향하중 예측에 대한 연구)

  • Park, Seoryong;Kim, Hongil;Lee, Soogab
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.106-113
    • /
    • 2018
  • The Intense acoustic wave generated by the jet flame at the lift-off causes the vehicle to vibrate in the form of acoustic loads. The DSM-II(Distributing Source Method-II), which is a representative empirical acoustic loads prediction method, is a method of distributing a noise source along a jet flame axis and has advantages in calculation cost and accuracy. However, due to the limitation of the distributing method, there is a limit to accurately reflect the various launch pad configurations. In this study, acoustic loads prediction method which can freely distribute noise sources is studied. by introducing NURBS(Non-Uniform Rational B-Spline) modeling into empirical prediction method. For the verification of the newly introduced analytical technique of the NURBS, the acoustic loads prediction for the Epsilon rocket's low-noise launch pad shape was performed and the results of the analysis were compared with the existing prediction methods and experimental results.

Optimization Design of Space Launch Vehicle Using Genetic Algorithm (유전 알고리즘을 이용한 우주 발사체 통합 최적 설계)

  • Lee, Kangkyu;Cha, Seung-won;Yang, Sungmin;Kim, Yong-chan;Oh, Seok-Hwan;Lee, Sangbok;Roh, Tae-Seong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.1-11
    • /
    • 2018
  • A system design and integrated design process for a space launch vehicle were established based on system engineering. With the mission design results for a given payload weight and trajectory, it is possible to perform optimal design by integrating each unit such as propulsion, weight estimation, and aerodynamic force after analysis, during in the system design process. The program is finally configured to verify that the designed vehicle can perform its mission through 3-DOF trajectory optimization simulation. Genetic algorithms are used as the optimization method, and the optimal design results of the variables and parameters to be considered during design are presented.

우주발사체용 터보펌프 액체추진기관 시스템 분석

  • Seo, Kyoun-Su;Joh, Mi-Ok;Choi, Young-In;Hong, Soon-Do;Oh, Bum-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.151-156
    • /
    • 2003
  • Liquid rocket engine system is classified into an engine of pressurization and turbo pump type by the way of fuel fed-supporting system. In the KSR-III sounding rocket, an engine of pressurization type was used, but there was lots of technical problems to be solved for a use as the first stage engine of space launch vehicle. So, an engine of turbo pump type was required to be developed to overcome the technical limitation of liquid rocket engine. In this research, the analysis of propellant of Kerosine-LOX and methane-LOX which are noticed as a future propellant was carried out for the purpose of studying the basic characteristics. And to review the basic characteristics of an engine of turbo pump type, among the sizing variant of the space launch vehicle, the ways of injecting a satellite to a direct orbit and transient orbit were discussed in this paper.

  • PDF

A study on the relation between the first stage liquid rocket engine and the launch vehicle capability (1단용 액체로켓엔진과 발사체 운송 능력과의 관련성 연구)

  • Moon, In-Sang;Moon, Il-Yoon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.134-140
    • /
    • 2007
  • Since the successful launch of Sputnik 1, a rocket engine was evolved rapidly. The first artificial satellite Sputnik has only 182 lb mass with a size of a basket ball, a modern artificial satellite is over 10 tons. As the size and the mass of an artificial satellite increases, the stronger launch vehicles are required. However, the story is different in the field of the rocket engine development. In the early to mid age of the space race, rocket engine study was focused on the stronger and bigger engine development, but from the 80's the tide has changed. A rocket engine must be strong and also economic. This trend was accelerated from when a rocket launch was used commercially. In this study, a capability of the launch vehicle and engine was investigated to provide a reference for a liquid rocket engine development plan.

  • PDF

Prediction and Validation of Design Loads of Satellite Components Using Modal Mass Acceleration Curve (모달 질량 가속도 곡선을 이용한 인공위성 탑재품의 설계하중 예측 및 검증)

  • Go, Myeong-Seok;Lim, Jae Hyuk;Kim, Kyung-Won;Hwang, Do-Soon;Oh, Hyunung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.9
    • /
    • pp.739-748
    • /
    • 2021
  • This paper discusses the prediction and validation of design loads of satellite components using modal mass acceleration curve (Modal MAC). To calculate the acceleration upper bound of the satellite components subjected to the launch environment by the Modal MAC, the parameters of SpaceX Falcon 9 launch vehicle were used, and the acceleration upper bound curve in the modal domain was derived. After that, the maximum acceleration loads applied to the satellite components were predicted by combining Modal MAC with the spacecraft interface loads of the satellite/launch vehicle and modal information of the satellite. In addition, the accuracy of the Modal MAC was validated through comparison with the results of the coupled loads analysis using a simple satellite and launch vehicle model.