• Title/Summary/Keyword: 우주물체 추락 예측

Search Result 2, Processing Time 0.02 seconds

Development of a Software for Re-Entry Prediction of Space Objects for Space Situational Awareness (우주상황인식을 위한 인공우주물체 추락 예측 소프트웨어 개발)

  • Choi, Eun-Jung
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 2021
  • The high-level Space Situational Awareness (SSA) objective is to provide to the users dependable, accurate and timely information in order to support risk management on orbit and during re-entry and support safe and secure operation of space assets and related services. Therefore the risk assessment for the re-entry of space objects should be managed nationally. In this research, the Software for Re-Entry Prediction of space objects (SREP) was developed for national SSA system. In particular, the rate of change of the drag coefficient is estimated through a newly proposed Drag Scale Factor Estimation (DSFE), and is used for high-precision orbit propagator (HPOP) up to an altitude of 100 km to predict the re-entry time and position of the space object. The effectiveness of this re-entry prediction is shown through the re-entry time window and ground track of space objects falling in real events, Grace-1, Grace-2, Tiangong-1, and Chang Zheng-5B Rocket body. As a result, through analysis 12 hours before the final re-entry time, it is shown that the re-entry time window and crash time can be accurately predicted with an error of less than 20 minutes.

A Study on the trajectory prediction of the satellite re-entry in Korea (국내 위성추락 예측 연구)

  • Son, Ju-Young;Choi, Jin;Choi, Young-Jun;Bae, Young-Ho;Park, Jang-Hyun;Moon, Hong-Kyu;Yim, Hong-Suh;Kim, Myung-Jin;Lim, Yeo-Myeong;Hyun, Sung-Kyung;Kim, Ji-Hye;Jo, Jung Hyun
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.4
    • /
    • pp.142-149
    • /
    • 2013
  • As we, human expand its everyday life boundary to the geosynchronous orbit, we have experienced frequent chance of the atmospheric re-entry and surface impact of space objects(satellite and space debris). Recently a satellite re-entry monitoring room in Korea has been operated to predict the time and the location of the re-entry of space objects. However, we do not have a domestic version of a numerical re-entry model for normal operation using TLE (Two line Element) information from the United States Strategic Command yet. The space information from the several space operation centers has been used to analyse the re-entry situations. In this paper, the re-entry time is calculated with TLE based on the several atmosphere models, the result is comprehensively analyzed, a new re-entry case model fitted from the result of the predicted satellite re-entry times by a new Rubber Sheet Shift Method used by the domestic satellite re-entry room is suggested.