• Title/Summary/Keyword: 우라늄 동위원소 비

Search Result 21, Processing Time 0.025 seconds

Uranium Activity Analysis of Soil Sample Using HPGe Gamma Spectrometer (고순도 반도체(HPGe) 감마분광시스템을 이용한 토양 중 우라늄 방사능 분석)

  • Lee, Wan-No;Kim, Hee-Reyoung;Chung, Kun-Ho;Cho, Young-Hyun;Kang, Mun-Ja;Lee, Chang-Woo;Choi, Geun-Sik
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.3
    • /
    • pp.105-110
    • /
    • 2010
  • Using N-type HPGe gamma spectrometer, uranium analysis technique of soil sample is developed where the chemical preprocessing is not a necessity. The results of uranium activities using the method presented in this paper were compared with those results with conventional alpha spectrometer and two results were similar from within uncertainty range. Therefore, this new method will be applied in uranium activity analysis of soil sample.

Background effect on the measurement of trace amount of uranium by thermal ionization mass spectrometry (열이온화 질량분석에 의한 극미량 우라늄 정량에 미치는 바탕값 영향)

  • Jeon, Young-Shin;Park, Yong-Joon;Joe, Kih-Soo;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.487-494
    • /
    • 2008
  • An experiment was performed for zone refined Re-filament and normal (nonzone refined) Re-filament to reduce the background effect on the measurement of low level uranium samples. From both filaments, the signals which seemed to come from a cluster of light alkali elements, $(^{39}K_6)^+$, $(^{39}K_5+^{41}K)^+$ and $PbO_2$ were identified as the isobaric effect of the uranium isotopes. The isobaric effect signal was completely disappeared by heating the filament about $2000^{\circ}C$ at < $10^{-7}$ torr of vacuum for more than 1.5 hour in zone refined Refilaments, while that from the normal Re-filaments was not disappeared completely and was still remained as 3 pg. of uranium as the impurities after the degassing treatment was performed for more than 5 hours at the same condition of zone refined filaments. A threshold condition eliminating impurities were proved to be at 5 A and 30 minutes of degassing time. The uranium content as an impurity in rhenium filament was checked with a filament degassing treatment using the U-233 spike by isotope dilution mass spectrometry. A 0.31 ng of U was detected in rhenium filament without degassing, while only 3 pg of U was detected with baking treatment at a current of 5.5 A for 1 hr. Using normal Re-filaments for the ultra trace of uranium sample analysis had something problem because uranium remains to be 3 pg on the filament even though degassed for long hours. If the 1 ng uranium were measured, 0.3% error occurred basically. It was also conformed that ionization filament current was recommended not to be increased over 5.5 A to reduce the background. Finally, the contents of uranium isotopes in uranium standard materials (KRISS standard material and NIST standard materials, U-005 and U-030) were measured and compared with certified values. The differences between them showed 0.04% for U-235, 2% for U-234 and 2% for U-236, respectively.

Secondary Ion Man Spectrometry: Theory rind Applications in Geosciences (이차이온질량분석기의 원리와 지질학적 응용)

  • 최변각
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.3
    • /
    • pp.222-232
    • /
    • 2001
  • Secondary ion mass spectrometry (SIMS) uses focused high-speed primary ions to produce secondary ions from sample surface that are analyzed through a mass filter. SIMS is often called as ion microprobe, since it offers a micrometer-scale spatial resolution. Although the precision and accuracy of SIMS are not as good as many conventional mass spectrometers, it has several advantages such as small sample-size requirement, high spatial resolution and capability of in-situ analysis. In the field of geochemistry/cosmochemistry, SIMS is widely used for (1) stable isotope geochemistry of H, C, O, S, etc., (2) geochronology of U/Th-bearing minerals, (3) lateral distribution of trace elements in a mineral, and (4) discovery of presolar grains and investigation of their isotopic compositions.

  • PDF

Alternative Method for the Treatment of Chemical Wastes Containing Uranium (우라늄함유 화학폐수의 적정처리 기술)

  • Kim Kil-Jeong;Shon Jong-Sik;Hong Kwon-Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.2
    • /
    • pp.179-186
    • /
    • 2006
  • Chemical wastes are generated from nuclear facilities and R&D laboratories, but the uranium concentration in the final dried cake is evaluated into 11.2 Bq/g, which exceeds the exemption level of 10 Bq/g for each U isotopes, so the cake is categorized into a radioactive waste. Acid dissolution was applied to extract uranium from the waste sludge, and uranium adsorption on the dissolved solution was experimented by using IRN-77 and Diphosil bead. A large amount of resin was required to get above 80% of uranium removal, which was found to be due to a large amount of metal ions simultaneously dissolved from the precipitates with uranium. As an alternative method, acid dissolution is applied to the dewatered wet cake of the sludge, and the natural evaporation method is adopted for the dissolved solution. The uranium concentration of the dissolved solution was estimated to be 6.97E-01 Bq/ml, and the specific activity of the final waste sheets is evaluated to be 4.3 Bq/g. These results lead to the suggestion that the application of acid dissolution to the wet cake and the natural evaporation for the dissolved solution is an effective treatment method for chemical wastes containing uranium.

  • PDF

Separation and Purification for the Determination of Zirconium and Its Isotopes in PWR Spent Nuclear Fuels (PWR 사용후핵연료 중 Zr 및 Zr 동위원소 정량을 위한 분리 및 정제)

  • Kim, Jung Suk;Jeon, Young Shin;Park, Yong Joon;Lee, Chang Heon;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.421-428
    • /
    • 1998
  • A method has been studied to separate Zr from various fission products in PWR spent nuclear fuels. A solution containing metal ions in place of radioactive fission products was prepared. The Zr was separated with 5 M HCl followed by eluting metal ions such as Ce, Nd, Cs, Rb, Ba, Sr, Ru, Rh, Pd, Ag and Cd with 12 M HCl on Dowex $1{\times}8$, anion exchange resin. The recovery of Zr was more than 95%. The purification of Zr was carried out on anion exchange resin, Dowex $1{\times}8$, in 5 M HCl in order to remove Mo causing isobaric effect during mass spectrometry. The method was applied to separate Zr from a spent PWR fuel. From mass spectrometric measurement, the purified Zr portion was not showed the isobars from other elements such as Mo and Sr.

  • PDF

Hydrochemistry and noble gas origin of hot spring waters of Icheon and Pocheon area in Korea (이천 및 포천지역 온천수의 수리화학적 특성 및 영족기체 기원)

  • Jeong, Chan-Ho;Koh, Yung-Kwon;Shin, Seon-Ho;Nagao, Keisuke;Kim, Kyu-Han;Kim, Gun-Young
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.529-541
    • /
    • 2009
  • Hydrochemical, stable isotopic ($\delta^{18}O$ and dD) and noble gas isotopic analyses of seven hot spring water samples, eleven groundwater samples and six surface water samples collected from the Icheon and Pocheon area were carried out to find out hydrochemical characteristics, and to interpret the source of noble gases and the geochemical evolution of the hot spring waters. The hot spring waters show low temperature type ranging from 21.5 to $31.4^{\circ}C$ and the pH value between 6.69 and 9.21. Electrical conductivity of hot spring waters has the range from 310 to $735\;{\mu}S/cm$. Whereas the hot spring water in the Icheon area shows the geochemical characteristics of neutral pH, the $Ca-HCO_3$(or $Ca(Na)-HCO_3$) chemical type and a high uranium content, the hot spring water in the Pocheon area shows the characteristics of alkaline pH, the $Na-HCO_3$ chemical type and a high fluorine content. These characteristics indicate that the hot spring water in the Icheon area is under the early stage in the geochemical evolution, and that the hot spring water in the Pocheon area has been geochemically evolved. The $\delta^{18}O$ and ${\delta}D$ values of hot spring waters show the range of $-10.1{\sim}-8.69%o$ and from $-72.2{\sim}-60.8%o$, respectively, and these values supply the information of the recharge area of hot spring waters. The $^3He/^4He$ ratios of the hot spring waters range from $0.09\;{\times}\;10^{-6}$ to $0.65\;{\times}\;10^{-6}$ which are plotted above the mixing line between air and crustal components. Whereas the helium gas in the Icheon hot spring water was mainly provided from the atmospheric source mixing with the mantle(or magma) origin, the origin of helium gas in the Pocheon hot spring water shows a dominant crustal source. $^{40}Ar/^{36}Ar$ ratios of hot spring water are in the range of an atmosphere source.

Geochemical Origins and Occurrences of Natural Radioactive Materials in Borehole Groundwater in the Goesan Area (괴산지역 시추공 지하수의 자연방사성물질 산출특성과 지화학적 기원)

  • Kim, Moon Su;Yang, Jae Ha;Jeong, Chan Ho;Kim, Hyun Koo;Kim, Dong Wook;Jo, Byung Uk
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.535-550
    • /
    • 2014
  • The origins and varieties of natural radioactive materials, including uranium and radon-222, were examined in a drilled borehole extending to a depth of 120 m below the surface in the Goesan area. In addition to core samples, eight groundwater samples were collected at different depths, using a double packer system and bailer, and their geochemical characteristics were determined. Most of the rock samples from the drilled core consisted of granite porphyry, with sedimentary rocks (slate, carbonate, or lime-silicates) and pegmatite occurring in certain sections. The pH of samples varied from 7.8 to 8.4, and the groundwater was of a Na-$HCO_3$type. Uranium and thorium concentrations in the core were < 0.2-14.8 ppm and 0.56-45.0 ppm, respectively. Observations by microscope and an electron probe microanalyzer (EPMA) showed that the mineral containing the natural radioactive materials was monazite contained in biotite crystals. The uranium, which substituted for major elements in the monazite, appeared to have dissolved and been released into the groundwater in a shear zone. Concentrations of Radon-222 in the borehole showed no close relationship with levels of uranium. The isotopes of noble gases, such as helium and neon, would be useful for analyzing the origins and characteristics of the natural radioactive materials.

Efficient Sample Digestion Method for Uranium Determination in Soil using Microwave Digestion for Alpha Spectrometry (마이크로파 용해장치를 활용한 토양 중 우라늄의 알파분광분석법)

  • Kim, Chang Jong;Cho, Yoon Hae;Kim, Dae Ji;Chae, Jung Seok;Yun, Ju Yong
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.4
    • /
    • pp.213-218
    • /
    • 2012
  • Alpha spectrometry has been typically used for determination of the uranium isotopes in soil. For a number of uranium analysis in soil samples, rapid sample digestion with limited quantities of mixed acid containing HF will give a contribution for effective management of uranium analysis. Microwave digestion system is evaluated for rapid sample digestion using reference uranium soil (IAEA-375 soil). For completion of 0.5 g of soil digestion by microwave, 3 ml of HF in a 10 ml of mixed acid is minimum requirement volume for completed soil digestion for 80 minutes. Microwave digestion is timely effective techniques for uranium measurement using alpha spectrometry compared to the other methods (open vessel digestion, closed vessel digestion) due to rapid sample digestion. In addition, it can be reduced the occurrence of hazardous substances by minimizing the amount of HF.

Occurrence of Natural Radioactive Materials in Borehole Groundwater and Rock Core in the Icheon Area (이천지역 시추공 지하수와 시추코어내 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Dong-Wook;Kim, Moon-Su;Lee, Young-Joon;Kim, Tae-Seung;Han, Jin-Seok;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.22 no.1
    • /
    • pp.95-111
    • /
    • 2012
  • This study investigated the relationship between the geochemical environment and the occurrence of natural radioactive materials (uranium and Rn-222) in borehole groundwater at an Icheon site. The drill core recovered from the study site consists mainly of biotite granite with basic dykes. The groundwater samples were collected at four different depths in the borehole using the double-packed system. The pH range of the groundwater was 6.5~8.6, and the chemical type was Ca-$HCO_3$. The ranges of uranium and Rn-222 concentrations in the groundwater were 8.81~1,101 ppb and 5,990~11,970 pCi/L, respectively, and concentrations varied greatly with depth and collection time. The ranges of uranium and thorium contents in drill core were 0.53~18.3 ppm and 6.66~17.5 ppm, respectively. Microscope observations and electron microprobe analyses revealed the presence of U and Th as substituted elements for major composition of monazite, ilmenite, and apatite within K-feldspar and biotite. Although the concentration of uranium and thorium in the drill core was not high, the groundwater contained a high level of natural radioactive materials. This finding indicates that physical factors, such as the degree of fracturing of an aquifer and the groundwater flow rate, have a greater influence on the dissolution of radioactive materials than does the geochemical condition of the groundwater and rock. The origin of Rn-222 can be determined indirectly, using an interrelationship diagram of noble gas isotopes ($^3He/^4He$ and $^4He/^{20}Ne$).

Hydrochemistry and Occurrence of Natural Radioactive Materials within Borehole Groundwater in the Cheongwon Area (청원지역 시추공 지하수의 수리화학 및 자연방사성물질 산출 특성)

  • Jeong, Chan-Ho;Kim, Moon-Su;Lee, Young-Joon;Han, Jin-Seok;Jang, Hyo-Geun;Jo, Byung-Uk
    • The Journal of Engineering Geology
    • /
    • v.21 no.2
    • /
    • pp.163-178
    • /
    • 2011
  • A test borehole was drilled in the Cheongwon area to investigate the relationship between geochemical environment and the natural occurrence of radioactive materials (uranium and Rn-222) in borehole groundwater. The borehole encountered mainly biotite schist and biotite granite, with minor porphyritic granite and basic dykes. Six groundwater samples were collected at different depths in the borehole using the double-packed system. The groundwater pH ranges from 5.66 to 8.34, and the chemical type of the groundwater is Ca-$HCO_3$. The contents of uranium and Rn-222 in the groundwater are 0.03-683 ppb and 1,290-7,600 pCi/L, respectively. The contents of uranium and thorium in the rocks within the borehole are 0.51-23.4 ppm and 0.89-62.6 ppm, respectively. Microscope observations of the rock core and analyses by electron probe microanalyzer (EPMA) show that most of the radioactive elements occur in the biotite schist, within accessory minerals such as monazite and limenite in biotite, and in feldspar and quartz. The high uranium content of groundwater at depths of -50 to -70 m is due to groundwater chemistry (weakly alkaline pH, an oxidizing environment, and high concentrations of bicarbonate). The origin of Rn-222 could be determined by analyzing noble gas isotopes (e.g., $^3He/^4He$ and $^4He/^{20}Ne$).