• Title/Summary/Keyword: 용존 철 저감

Search Result 16, Processing Time 0.023 seconds

Removal of Dissolved Iron in Groundwater by Injection-and-Pumping Technique: Application of Reactive Transport Modeling (주입-양수 기법을 활용한 지하수 내 용존 철 제거: 반응성용질이동모델링의 적용)

  • Choi, Byoung-Young;Yun, Seong-Taek;Kim, Kyoung-Ho;Koh, Yong-Kwon;Kim, Kang-Joo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.29-37
    • /
    • 2007
  • Shallow alluvial groundwaters in Korea of tell exceed the Korean Drinking Water Standard for dissolved iron (0.3 mg/L), which is one of the important water quality problems, especially in the use of bank infiltration technique. Using the reactive transport modeling, in this study we simulated the effectiveness of injection-and-pumping technique to remove dissolved iron in groundwater. The results of simulation showed that pumping of groundwater after injection of oxygenated water into aquifers is very effective to acquire the permissible water quality level. Groundwater withdrawal up to several times of irjected water in volume can be applicable to yield drinkable water. Potential problems such as clogging and permeability lowering due to in-situ precipitation of iron hydroxides may be insignificant. We also discuss on the mechanism and spatial extent of iron removal in aquifer.

In situ iron/manganese removal and permeability improvement at the river bank filtration site (강변여과수내 철망간 저감 및 투수성 개선)

  • Kim, Byung-Woo;Kim, Byung-Goon;Hur, Young-Teck;Kim, Dong-Sup;Kim, Hong-Suck
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.228-228
    • /
    • 2018
  • 강변여과는 지하수 인공함양 방식 중 유도함양(induced recharge) 또는 간접함양 방식에 속한다. 이는 하천 및 강변 부근에 집수시설을 설치한 후, 미고결층 대수층(unconsolidated aquifer)의 자연 오염 저감능을 이용하여 지표수를 간접 취수하는 방식으로 수질이 불량한 지표수가 대수층을 관류하면서 희석, 화학적 이온 교환 및 반응, 흡착, 생물막(biofilm; 미생물에 의한 자연저감), 여과 등을 통하여 수질이 개선된다. 강변여과수내의 용존 농도가 높은 철과 망간은 수처리 비용증가, 용수관정 및 시설물의 수명단축을 초래한다. 따라서 강변여과 지역의 미고결 대수층에서 효과적인 철과 망간 동시 제거(vyredox)를 위해 에어서징(air surging)과 블록 서징(block surging)을 실시하기 위해서 실내 물탱크 모델(water tank model)에서 에어서징에 따른 공기 순환 우물시스템을 관찰하였으며, 이를 바탕으로 현장시험(Test bed)에 적용하였다. 미고결 대층수층에서의 철 망간은 음용수 기준치(각각 0.3 mg/L)를 초과하고 있으며, 강변여과 취수 개발 및 이용을 제한하는 요인이 되고 있다. 본 연구에서 사용된 에어서징과 블록서지 기술은 자갈층 및 미고결 대수층에 충진된 슬라임 및 폐색(clogging)을 제거함과 동시에 관정 주변의 대수층의 투수성 개선과 산화환경으로 치환되며, 대수층에 잔존하는 철/망간의 산화물들을 관정내로 빼낼 수 있는 방법이다. 따라서 서징에 따른 폐색 제거효율을 검토한 결과에서 철 망간 이온농도 저감효과와 관정 주변의 수리전도도(hydraulic conductivity) 및 저류계수(coefficient of storage)가 증가한 것으로 나타났다. 이와 같이 강변여과에 의한 폐색은 미고결층내 공기주입 및 블록서지를 통하여 철/망간 이온농도 저감 및 수리특성 개선 효과에 유용한 것으로 평가된다.

  • PDF

Biosparging 공법을 이용한 석유계탄화수소화합물 오염토양에 대한 현장적용성 평가

  • 신정엽;오경철;공준;이승우;전기식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.35-38
    • /
    • 2004
  • 부틸알데히드로 오염된 대상 부지에 Biosparging 공법의 현장 적용을 위해 적정 공기 주입 압력 조건을 도출한 결과, 주 오염층인 자갈질 모래층에 공기주입 가능 파괴압력(Pe)는 약 300mmAq로 측정되었으며 4,500mmAq 압력 조건에서는 용존 산소농도의 영향 반경이 약 3 m로 나타났다. 위의 조건을 적용하여 약 150일간 운전한 결과, 영양물질을 투입하지 않은 초기 90일 동안 최고농도 대비 약 90%가 저감되었으며 그 이후에 영양물질을 투입하여 초기 최고 농도 대비 96%가 저감되어 복원목표치인 50ppm을 모든 지역에서 만족시켰다. 또한 생분해 반응속도가 k=0.03/day로 나타나 휘발성이 낮고 생분 해도가 뛰어난 부틸알데히드로 오염된 자갈질 모래층에 Biosparging공법이 성공적으로 적용된 사례이다.

  • PDF

Hydrogen Sulfide Removal in Full-scale Landfill Gas Using Leachate and Chelated Iron (침출수 및 철킬레이트를 이용한 실규모 매립가스 내 황화수소 제거)

  • Park, Jong-Hun;Kim, Sang-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.51-56
    • /
    • 2019
  • $H_2S$ is a detrimental impurity that must be removed for upgrading biogas to biomethane. This study investigates an economic method to mitigate $H_2S$ content, combining scrubbing and aeration. The desulfurization experiments were performed in a laboratory apparatus using EDTA-Fe or landfill leachate as the catalyst and metered mixture of 50-52% (v/v) $CH_4$, 32-33% (v/v) $CO_2$ and 500-1,000 ppmv $H_2S$ balanced by $N_2$ using the C city landfill gas. Dissolved iron concentration in the liquid medium significantly affected the oxidation efficiency of sulfide. Iron components in landfill leachate, which would be available in a biogas/landfill gas utilization facility, was compatible with an external iron chelate. More than 70% of $H_2S$ was removed in a contact time of 9 seconds at iron levels at or over 28 mM. The scrubbing-aeration process would be a feasible and easy-to-operate technology for biogas purification.

Removal of Dissolved Organic Matter by Ozone-biological Activated Carbon process (오존처리와 생물활성탄 공정에 의한 상수원수 중의 용존유기물 제거)

  • 이상훈;문순식;신종철;최광근;심상준;박대원;이진원
    • KSBB Journal
    • /
    • v.18 no.3
    • /
    • pp.211-216
    • /
    • 2003
  • The removal yield of dissolved organic matter in drinking water by biological activated carbon (BAC) process was investigated. The tested processes wer raw water-AC process (BAC1), raw water-ozonation-BAC process (BAC2), and raw water-ozonation-coagulation/sedimentation-BAC process (BAC3). The amounts of organic matter was measured as dissolved organic carbon (DOC), ulta-violet radiation at 254 nm wavelength ($UV_{254}$), total nitrogen (T-N), ammonia nitrogen (NH_3$-N), and total phosphate (T-P). As a results, 30.7% DOC was removed by BAC2 process, which showed higher removal efficiency than BAC1 or BAC3 processes. The removal yield of $UV_{254}$ in BAC1, BAC2, and BAC3 processes were observed as 45.3%, 44.6%, 58.4%, respectively. And the removal yield of ammonia nitrogen were 66%, 81%, 29% in each BAC processes. The optimal empty bed contact time (EBCT) of BAC processes was estimated as 10 minute. This study has shown that BAC process combined with ozone treatment was efficient for removing dissolved organic matter in water.

Effects of Submerged Aerator on the Growth of Algae in Daechung Reservoir (대청호에 설치된 수중폭기시설이 조류 발생에 미치는 영향)

  • Oh, Kyoung-Hee;Jeong, Dong-Hwan;Yang, Sang-Yong;Jeon, Tae-Wan;Cho, Young-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.268-275
    • /
    • 2013
  • To evaluate the effects of submerged aerators installed at Chudong and Muneui areas in Daechung Reservoir on improvement of water quality and reduction of algal bloom, the water quality was monitored at the effected and control areas at the time of operation. The water temperature and concentrations of dissolved oxygen, total phosphorus, and total nitrogen in depth at the effected and control areas were not different each other, indicating the submerged aerators at these areas are not effective for circulation of water body and reduction of nutrients. In warmer season, the concentrations of total phosphorus in deep water, which was probably released from contaminated sediment or inflowed from watershed, was high. To decide the operation of aerators in this season, the concentration of total phosphorus in water should be considered because the dispersed phosphorus by operation of aerators can enhance the algal growth.

Fe and Al Behaviors in Precipitates and Pollution Characteristics of Acid Mine Drainage from the Donghae Abandoned Coal Mine, Taebaek, Korea (태백시 동해폐탄광 산성광산배수의 오염현황과 하상퇴적물 내 철, 알루미늄의 거동특성)

  • Choo, Chang Oh;Park, Jung-Won;Lee, Jin Kook
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.579-598
    • /
    • 2019
  • We investigated geochemical contaminants and Fe, Al behavior in precipitates of acid mine drainage (AMD) from the Donghae abandoned coal mine, Taebaek, Gangwon Province using aqueous chemical analyses, XRD, IR, and 27Al NMR, Our results showed that water chemistry changed with pH and Eh, and saturation indices of chemical species in the AMD. According to saturation calculated by visual MINTEQ, the AMD was saturated with various Fe-, Al-oxyhydroxide minerals. Reddish brown precipitates are composed of schwertmannite, ferrihydrite, and goethite, whereas whitish precipitates are composed mostly of alumimous minerals such as poorly crystallized basaluminite with trace Al13-Tridecamer. It is important to apply active treatment methods rather than simple storage pond and to control the precipitation and solubility of iron species and aluminous species for ensuring remediation and control for the AMD discharged from the Donghae abandoned coal mine.

Characteristics of Water Contamination and Precipitates of Acid Mine Drainage, Bongyang Abandoned Coal Mine, Danyang, Chungbuk Province with Emphasis on Fe and Al behaviors (충북 단양 봉양폐탄광 산성광산배수의 수질오염과 침전물의 특성: 철, 알루미늄의 거동을 중심으로)

  • Choo, Chang Oh;Lee, Jin Kook
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.163-183
    • /
    • 2019
  • We investigated acid mine drainage (AMD) of Bongyang abandoned coal mine, Danyang, Chungbuk Province with emphasis on geochemical contaminants in AMD and precipitates using chemical analyses, XRD, SEM, IR, and $^{27}Al$ NMR. Water chemistry changes with pH and oversaturation of chemical species. According to calculation of saturation index, the AMD is saturated with various Fe, Al minerals. Orange or orcher precipitates are composed of schwertmannite and goethite, associated with Leptothrix orchracea bacteria, whereas whitish precipitates are composed mostly of alumimous minerals such as basaluminite with poor crystallinity. The whitish precipitates include trace $Al_{13}$-Tridecamer. It is important to control the precipitation and solubility of aluminous species for ensuring remediation and control for the AMD discharged from the Bongyang abandoned coal mine.

A Case Study of Monitored Natural Attenuation at the Petroleum Hydrocarbon Contaminated Site : II. Evaluation of Natural Attenuation by Groundwater Monitoring (유류오염부지에서 자연저감기법 적용 사례연구 II. 지하수모니터링에 의한 자연저감 평가)

  • Yun Jeong Ki;Lee Min Hyo;Lee Suk Young;Noh Hoe Jung;Kim Moon Soo;Lee Kang Kun;Yang Chang Sool
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.3
    • /
    • pp.38-48
    • /
    • 2004
  • Natural attenuation of petroleum hydrocarbon was investigated at an industrial complex about 45 Km away from Seoul. The three-years monitoring results indicated that the concentrations of DO, nitrate, and sulfate in the contaminated area were significantly lower than the background monitoring groundwater under the non-contaminated area. The results also showed a higher ferrous iron concentration, a lower redox potential, and a higher (neutral) pH in the contaminated groundwater, suggesting that biodegradation of TEX(Toluene, Ethylbenzene, Xylene) is the major on-going process in the contaminated area. Groundwater in the contaminated area is anaerobic, and sulfate reduction is the dominant terminal electron accepting process in the area. The total attenuation rate was about 0.0017∼0.0224day$^{-1}$ and the estimated first-order degradation rate constant(λ) was 0.0008∼0.0106day$^{-1}$ . However, the reduction of TEX concentration in the groundwater was resulted from not only biodegradation but also dilution and reaeration through recharge of uncotaminated surface and groundwater. The natural attenuation was, therefore, found to be an effective, on-going remedial process at the site.

Geochemical Characteristics of Groundwater during the Constant and Step-drawdown Pumping Tests at the River Bank Filtration Site (장기 및 단계 양수시험 시 강변여과 지하수의 수질변화 특성)

  • Kim, Gyoobum;Shin, Seonho;Kim, Byungwoo;Park, Joonhyung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.11-21
    • /
    • 2013
  • In-situ test to find the change of $Fe^{2+}$ and $Mn^{2+}$ concentrations and ion contents in groundwater was conducted during two pumping tests at the riverbank filtration site, where is the riverine area of the Nakdong River in Changnyeong-Gun. Groundwater was sampled at one pumping well and 10 monitoring wells during a 5 steps drawdown pumping test with the rates from $500m^3/day$ to $900m^3/day$ and a constant pumping test with $800m^3/day$. The change in ion concentration of groundwater was more remarkable during a step drawdown pumping test than a constant pumping test. Especially, the decrease in $Fe^{2+}$ and $Mn^{2+}$ concentrations was distinct in a step drawdown pumping test and it happens predominantly along the direction that the radius of pumping influence was small due to a good aquifer connectivity to a pumping position. The precipitation and the oxidation of iron and manganese were caused by an air inflow and a disturbance in groundwater flow due to an abrupt change in pumping rate. The pumping rate and spatial distribution of an aquifer around a pumping well need to be considered as an important factor for the development of in-situ iron and manganese treatment technology.