• Title/Summary/Keyword: 용존 무기 질소

Search Result 139, Processing Time 0.022 seconds

Characteristics of Geochemical Processes along the Salinity Gradient in the Han River Estuary (한강 기수역에서 염분구배에 따른 지화학적 특성 변화)

  • 김동화;박용철;이효진;손주원
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.4
    • /
    • pp.196-203
    • /
    • 2004
  • To understand the geochemical processes in the Han River Estuary, distributions and behaviors of nutrients, dissolved organic matters, and uranium were investigated and analyzed during estuarine tidal mixing in June 2000 and February 2001. The distribution of inorganic nutrients showed very dynamic distributional patterns implying an apparent nitrification process and a concave non-conservative mixing along the salinity gradient. Dissolved organic carbon was high in the upstream region and decreased sharply in the low salinity region of around 5 psu. The 3-D fluorescence characteristic of dissolved organic matter showed two distinct fluorophores in the study area. Biomacromolecules originated mainly from the indigenous biochemical processes and geomacromolecules from terrestrial humic materials. In the study area, the distribution of geomacromolecule showed a concave non-conservative property along the salinity gradient presumably due to the flocculation and removal processes in the estuary. Meanwhile, distribution of the dissolved uranium, mainly in the form of stable uranium carbonate complex, also showed a concave non-conservative property along the salinity gradient in the Han River Estuary. From this study, the removal rate of dissolved uranium in the Han River Estuary was estimated to be about 7.1 ton per year.

Limiting Nutrient Based on Alkaline Phosphatase Activity in the Frontal Area of the Southern Sea, Korea (춘계 남해 전선역에서 알칼리 인산분해 효소를 통한 제한 영양염의 평가)

  • Oh, Seok Jin;Jang, Minik;Nam, Ki Taek;Kim, Seok-Yun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.7
    • /
    • pp.885-892
    • /
    • 2017
  • We estimated the limiting nutrient and DIP limiting history based on alkaline phosphatase (APase) activity during the spring of 2017 in the Southern Sea, Korea. In the frontal area, concentration of dissolved inorganic phosphorus (DIP), dissolved inorganic nitrogen (DIN): DIP ratio and Chlorophyll a (Chl-a) were < $0.2{\mu}M$, 23.2 and $2.2{\mu}g/L$, respectively, indicating high productivity despite DIP limiting. The relationship between APase and DIP indicates that the study area had limited DIP because of a strongly reverse correlation (r= -0.81; P<0.001). Relationship between APase and Chl-a (r=0.61, p<0.001) also indicated that APase may have been induced by phytoplankton (ca. 60 %) and bacteria (ca. 40 %). In DIP limiting history in this study area, frontal area and non-frontal areas might have induced long-term DIP limitation and the recent relief from DIP-limitation, respectively, based on distributions of dissolved APase and particulate APase. Thus, these results suggest that by measuring the enzyme that hydrolyzes organic matter such as APase in frontal area, it is possible to estimate temporal and spatial characteristics of limiting nutrient, thereby improving our understanding of biogeochemistry cycles.

The Contents of Nitrogen, Phosphorus, Silicon Nutrient and Algal Growth Potential (AGP) in the Sediment of Taechong Reservoir (대청호 저토의 N, P및 Si 영양염 함량과 조류생장잠재력)

  • Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.2 s.94
    • /
    • pp.106-118
    • /
    • 2001
  • The chemistry of porewater and exchangeable nutrients of sediment was determined to define potential influence of sediment nutrients on the water quality and the phytoplankton growth in Taechong Reservoir in March and May of 2000. The sediment-water interface showed almost anoxic state, < 0.5 mg $O_2/l$. Conductivity of the porewater was higher 1.9${\sim}$2.6 fold than that of sediment, and its variation was greater in the shallow water. Eh ranged from -12mV to -148 mV and bulk density from $1.17\;g/cm^3$ to $1.30\;g/cm^3$ and they did not differ among stations. The water content in the sediment ranged from 58% to 72% and organics from 8% to 13%, and they were higher toward the lower part of reservoir. Soil texture was in the order of sand>clay>silt and sandy sediment accounted for 97% of the total sediment. The total bacterial numbers and diatom abundance were high in the downstream of the reservoir. In porewater and exchangeable nutrients of sediment, nitrogen and phosphorus were mostly consist of the particulate form. Inorganic nitrogen was mostly composed of $NH_4$. Nitrogen of porewater was mostly an inorganic form while exchangeable nutrients were composed an organic form. However, phosphorus was composed of dissolved organic fraction in the porewater while inorganic fraction in the exchangeable nutrients. Silicon content of sediment was much exchangeable nutrients with 63%, and it was higher than in the porewater. In summary, the sediments of Taechong Reservoir were mostly composed of organics and assessed to be a eutrophic state.

  • PDF

Spatio-Temporal Distribution of Nutrients in the Surface Waters of Deukryang Bay 1. Seasonal Variation of Nutrients and Limiting Factors for Primary Production (득량만 표층수중 영양염류의 시공간적 분포특성 -1. 영양염류의 계절변화와 기초생산 제한인자-)

  • YANG Han-Soeb;KIM Soung-Soo;KIM Guebuem
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.4
    • /
    • pp.475-488
    • /
    • 1995
  • In order to see the seasonal variation of nutrients and the limiting factors to the primary production in Deukryang Bay, both dissolved inorganic nutrients and salinity were measured in the surface waters during the periods from July 1992 to March 1993. The mean value of salinity was the lowest in ?all and the highest in early spring. Dissolved inorganic nitrogen (DIN) was the highest in winter and the lowest in summer. However, both phosphate and silicate were the highest in summer and the lowest in fall. Salinity was generally higher in the outer region than in the inner region of the bay.DIN content was nearly depleted (less than $2{\mu}M$) in summer. From fall to spring, DIN content was nearly depleted in the inner region and relatively high in the outer region of the Day. Phosphate was the highest in summer showing an opposite distribution pattern to salinity, and it was nearly depleted (less than $0.1{\mu}M$) in fall and winter. In spring, however, phosphate content was slightly high in the outer region. Silicate content showed an opposite distribution pattern to salinity in summer. in other seasons, However, the distribution pattern of silicate was similar to the salinity. DIN seemed to be a limiting factor for the primary production at all area of the bay in summer and at the inner region in other season. However, phosphate seemed to be a limiting factor at all area of the bay in fall and winter and at the inner region in spring. Silicate may limit the production of diatoms at the inner region of the bay in winter and spying. Both phosphate and silicate showed a good inverse relationship with salinity in summer, which indicates inputs of these nutrients from the freshwater runoff. In the other seasons, both nitrate and silicate showed a positive linear relationship with salinity in the outer region of the bay, suggesting that these two nutrients were mainly supplied by the inflow of the offshore costal water which had high nitrate content associated with vertical mixing.

  • PDF

A Study on the Status of Marine Environment Management of Sea Port Cities - Focused on Busan Metropolitan City and Incheon metropolitan city - (해항도시의 해양환경 관리실태 분석 - 부산광역시와 인천광역시를 중심으로 -)

  • Kim, Sang-Goo
    • Journal of Navigation and Port Research
    • /
    • v.35 no.3
    • /
    • pp.259-263
    • /
    • 2011
  • This study explores ways to improve the actual conditions of ocean environment by conducting a comparative study on the current sea-water quality of Busan Metropolitan City and Incheon Metropolitan City that are representative sea port cities in Korea. The indices used to evaluate the sea-water quality include water temperature, salt content, PH, DO, COD, DIN, T-N, DIP, T-P, Sio2-Si, floating materials, and Chi-a. The findings of the analysis can be summarized as follows: First, ocean environmental states of Busan Metropolitan City and Incheon Metropolitan City are getting increasingly worse between the year of 2000 and 2003. Second, T-N, DIP and T-P have been main contributors in worsening ocean environmental states of Busan Metropolitan City and Incheon Metropolitan City.

Influences of Water Level and Vegetation Presence on Spatial Distribution of DOC and Nitrate in Wetland Sediments (수심의 정도와 식생의 유무에 따른 인공습지 토양 내 유기탄소와 질산염의 공간적 분포)

  • Seo, Ju-Young;Song, Keun-Yea;Kang, Ho-Jeong
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.59-65
    • /
    • 2010
  • Wetlands are a well known ecosystem which have high spatial-temporal heterogeneity of chemical characteristics. This high heterogeneity induces diverse biogeochemical processes, such as aerobic decomposition, denitrification, and plant productivity in wetlands. Understanding the dynamics of dissolved organic carbon (DOC) and inorganic nitrogen in wetlands is important because DOC and inorganic nitrogen are main factors controlling biological processes in wetlands. In this study, we assessed spatial distribution of DOC and inorganic nitrogen with relation to the different hydrology and vegetation in created wetlands. Both DOC and nitrate contents were significantly higher in vegetated areas than open areas. Different water levels also affected DOC contents and their quality. Average DOC contents were $0.37mg{\cdot}g^{-1}$ in deep riparian (DR) and $0.31mg{\cdot}g^{-1}$ in shallow riparian (SR). These results appeared to be related to the interaction between carbon supply by vegetation and microbial decomposition. On the other hand, inorganic nitrogen contents were not affected by water level differences. This result indicates that presence/absence of vegetation could be a more important factor than hydrology in the spatial dynamics of inorganic nitrogen. In conclusion, we observed that vegetation and hydrology differences induced spatial distribution of carbon and nitrogen which are directly related to biogeochemical processes in wetlands.

Temporal and Spatial Variations of water Quality of the Coastal Saline Groundwaters in Jeju Island (제주도 염지하수 수질의 시공간적 변화)

  • 김성수;김대권;손팔원;이창훈;하동수
    • Journal of Aquaculture
    • /
    • v.16 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • We have investigated water quality of the coastal saline groundwaters utilized for fish farms in Jeju Island. The water quality investigation included the spatial observations for 75 fish farms during March-May, 1994 and the hi-monthly observations for both coastal saline groundwaters and seawaters at four fish farms from August 1994 to December 1995. Water temperature of the saline groundwaters ranged from 16 to 18$^{\circ}C$ over the study period. Salinity of the saline groundwaters varied between 20.60 ppt and 34.02 ppt, slightly lower than that of the coastal seawaters(26.47~34.53 ppt). This salinity variation must be associated with local precipitation conditions in Jeju Island. The oxygen saturation for most saline groundwater samples was lower than 80%, ranging from 24.7 to 89.8%. The COD and pH values for the saline groundwaters were similar to those for the coastal seawaters. The concentrations of DIP for the saline groundwaters varied between 0.021 mg/L and 0.121 mg/ L, and seasonal variation of DIP in the saline groundwater ranged from 0.014 to 0.077 mg/L, which were higher than that of the coastal seawaters(0.000~0.015 mg/L). Nitrate in the saline groundwaters accounted for more than 90% of the DIM. The maximum concentrations of ammonia, nitrite, nitrate and DIN in the saline groundwaters were 0.085, 0.012, 2.294 and 2.309 mg/L, respectively. These concentrations of the saline groundwaters were considerably lower than those affected culture organisms. Overall, the saline groundwaters utilized for fish farms in Jeju Island appear to maintain good waterquality for fish farms.

Re-evaluation of Ammonium Data in Seawater: an Unique Short-Term Index (해수 암모늄 자료의 재평가: 독특한 단주기 수질지표 가능성)

  • JEONG, YONG HOON;YANG, JAE SAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.21 no.2
    • /
    • pp.58-66
    • /
    • 2016
  • We have evaluated the ammonium data in seawater as a potential short-term index for marine environment through the following steps. 1. reviewing of chemical characteristics of ammonium in seawater, 2. comparative relationships of ammonium data with other water quality indices such as DO, COD, and nutrients from Typical Marine Environment(TME) and Special Marine Environment(SME). Ammonium data generally represent negative correlation with DO, while positive correlation with COD. In particular, under frequent cases of seawater conditions showing similar concentration of COD or DO, we have limited choice of explanation for such situation. However ODIN(ODIN/RDIN) or RDIN(RDIN/TDIN) ratio could provide advanced information to understand these seawater conditions. Based on these results, we suggest ammonium data as a potential short-period index for transilient marine environment, such as benthic flux of bottom sediment, hypoxia, and algal bloom. Under overcoming several handicaps, ammonium data could be an useful tool for better understand short transformation of marine environment.

Spatiotemporal Variations of Marine Environmental Characteristics in the Middle East Coast of Korea in 2013-2014 (2013-2014년 한국 동해중부연안 해양환경특성의 시공간적 변화)

  • Lee, Yong-Woo;Park, Mi-Ok;Kim, Seong-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.274-285
    • /
    • 2016
  • In order to elucidate the spatiotemporal variations of marine environmental parameters, we collected seawater samples in the middle east coast of Korea in 2013-2014. A high temperature and low salinity were distinctively observed in the summer and a low temperature and high salinity pattern in the winter. The temperature of the bottom water was in the range of $2^{\circ}C$ to $7^{\circ}C$, with the temperature being relatively high in the winter, while the salinity was measured to be around 34, with no large differences across the seasons. The dissolved oxygen concentrations were in the range of $7mg\;L^{-1}$ to $12mg\;L^{-1}$, and it was relatively high in May compared to other seasons. The seawater temperature and dissolved oxygen concentration at the surface layer showed a significant negative correlation in the autumn and winter seasons, based on which it is seemed that water temperature is the main factor controlling the amount of dissolved oxygen in the autumn and winter seasons. The dissolved inorganic nitrogen (DIN) and silicate (DSi) increased 11- and 7-fold, respectively, in the winter compared to the summer. The DIN to DIP (dissolved inorganic phosphorus) ratio for the surface seawater was approximately 16, but it was relatively low in the spring season. On the other hand, the DIN to DIP ratio was relatively high in the summer. Based on this, it is seemed that nitrogen and phosphorus were the growth-limiting nutrients for phytoplankton in the spring and summer, respectively. Water quality was I (excellent) ~III (medium) level at the most stations except for some stations (level IV) during the autumn season, having low dissolved oxygen saturations.