• Title/Summary/Keyword: 용존공기부상법

Search Result 28, Processing Time 0.018 seconds

The Reaction Efficiency and Surface Characteristics for Metallic Ions in Air Flotation Process (부상공정에서 금속이온의 기포 표면 전위 특성 및 반응효율)

  • Han, Moo-Young;Dockko, Seok;Kim, Young-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.222-227
    • /
    • 2004
  • Flotation processes involve the use of very small bubbles (micro-bubbles) to separate particles from water. The process has become a good alternative to sedimentation, especially where the particles are small or of low density. Although the flotation process commences with a collision between particles and bubbles, most research has been focused only on the characteristics of the particles. In this paper, recent theoretical and experimental research on the characteristics of bubbles is summarized. The effect on the collision efficiency of the size and charge of bubbles is calculated through trajectory analysis. The size and charge of bubbles are measured under different conditions and the ramifications of the results are discussed. The results may lead to a better understanding and optimization of the existing process. In particular, we discuss an idea that a new advanced flotation process might be possible by the modification of the characteristics of the bubble alone or of both bubble and particle.

Evaluation of Floc Formation Conditions for Increasing Flotation Velocity in DAF Process (DAF 공정에서 부상속도 향상을 위한 플럭형성 조건 평가)

  • Kwon, Soon-Buhm;Min, Jin-Hee;Park, No-Suk;Ahn, Hyo-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.2
    • /
    • pp.245-255
    • /
    • 2006
  • Dissolved air flotation is a solid-liquid separation system that uses fine bubbles rising from bottom to remove particles in water. In order to enhance the flotation velocity and removal efficiency of flocs in the flotation process, we tried to obtain pretreatment conditions for the optimum DAF process operation by comparing and evaluating features of actual floc formation and flotation velocity etc, according to coagulant types and conditions for flocculation mixing intensity by using PIA, PDA, and FSA. Accordingly, generating big flocs that have low density at low flocculation mixing intensity may reduce treatment efficiency. In addition, generating small flocs at high flocculation mixing intensity makes floc-bubbles smaller, which reduces flotation velocity, In this study, it was found that high flocculation mixing intensity could not remove the remaining micro-particles after flocculation, which had negative effects on treated water quality, Therefore, in order to enhance treatment efficiency in a flotation process, flocculation mixing intensity around $50sec^{-1}$ is effective.

Effect of Drinking Water Treatment by DOF(Dissolved Ozone Flotation) System (DOF 공정에 의한 정수처리 효과)

  • Lee, Byoung-Ho;Song, Won-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.7
    • /
    • pp.743-750
    • /
    • 2008
  • In water treatment plant the Dissolved Ozone Flotation(DOF) System may be employed because this system has various abilities, such that it can remove SS using microbubbles, and it can exert strong oxidation power in removing taste and odor, color, and microbial agents. In order to investigate effectiveness of the DOF system in water treatment, removal characteristics of various water quality parameters were observed depending on the different levels of ozone concentrations. Removal efficiencies of water quality parameters in DOF system were compared with those in DAF(Dissolved Air Flotation) system and in CGS(Conventional Gravity Settling) system. Optimum ozone dose obtained in the pilot experiments was 2.7 mg/L. With increasing ozone dose higher than 2.7 mg/L, removal rates of turbidity, KMnO$_4$ consumption, UV$_{254}$ absorbance, and TOC were reversely lowered. High concentration of ozone dissociate organic matter in water, so that increasing dissolved organic level in effluent. Removal rates of water quality parameters at optimum ozone dose were obtained, such that removal rates of turbidity, KMnO$_4$ consumption, TOC, and UV$_{254}$ asorbance were 88.9%, 62.9%, 47%, and 77.3% respectively. Removal rate of THMFP was 51.6%. For all the parameters listed above, the DOF system was more effective than the DAF system or the CGS system. It is found that the DOF system may be used in advanced water treatment not only because the DOF system is more efficient in removing water quality parameters than the existing systems, but because the DOF system is also required smaller area than the CGS system for the treatment plant.

Pre-treatment of oily wastewater using a coagulation-DAF process with slit-nozzle (슬릿노즐기반 응집·공기부상공정을 통한 유류폐수 전처리)

  • Choi, Sangki;Kim, Youngmo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.6
    • /
    • pp.479-485
    • /
    • 2018
  • Large amounts of oily wastewater discharged from various industrial operations (petroleum refining, machinery industries and chemical industries) cause serious pollution in the aquatic environment. Although dissolved air flotation (DAF) separating oil pollutants using microbubbles represents current practice, bubble size cannot be selectively controlled, and lots of power is required to generate microbubbles. Therefore, to investigate performance of the DAF process, this study examined the distribution of different sizes of microbubbles resulting from changes in physical shear force via modifying shapes of a slit-nozzle without an additional power supply. Three types of slit-nozzles (different angle, shape and length of the slit-nozzle) were used to analyze the distribution of bubble size. At a slit angle of $60^{\circ}$, shear force was 4.29 times higher than a conventional slit, and particle size distribution (PSD) in the range between 2 and $20{\mu}m$ more than doubled. Treatment efficiency of synthetic oily wastewater through the coagulation-DAF process achieved 90% removal of COD by injecting $FeCl_3$ and PACl of 250 mg/L and 100 mg/L, respectively, and the same performance resulted using $FeCl_3$ of 200 mg/L and PACl of 80 mg/L employing a slit-nozzle angle of $60^{\circ}$. This study shows that a coagulation-DAF process using a modified slit-nozzle can improve the pre-treatment of oily wastewater.

Examining the Effect of L/W Ratio on the Hydro-dynamic Behavior in DAF System Using CFD & ADV Technique (전산유체역학과 ADV기술을 이용한 장폭비의 DAF조내 수리흐름에 미치는 영향 연구)

  • Park, No-Suk;Kwon, Soon-Bum;Lee, Sun-Ju;Bae, Chul-Ho;Kim, Jeong-Hyun;Ahn, Hyo-Won
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.4
    • /
    • pp.421-428
    • /
    • 2005
  • Dissolved air flotation (OAF) is a solid-liquid separation system that uses fine bubbles rising from bottom to remove particles in water. In this study, we investigated the effect of L/W (L; Length, W; Width) on the hydro-dynamic behavior in DAF system using CFD (Computational Fluid Dynamics) and ADV (Acoustic Doppler Velocimetry) technique. The factual full-scale DAF system, L/W ratio of 1:1, was selected and various L/W ratio (2:1, 3:1, 4:1 and 5:1) conditions were simulated with CFD. For modelling, 2-phase (gas-liquid) flow equations for the conservation of mass, momentum and turbulence quantities were solved using an Eulerian-Eulerian approach based on the assumption that very small particle is applied in the DAF system. Also, for verification of CFD simulation results, we measured the factual velocity at some points in the full-scale DAF system with ADV technique. Both the simulation and the measurement results were in good accordance with each other. As the results of this study, we concluded that L/W ratio and outlet geometry play important role for flow pattern and fine bubble distribution in the flotation zone. In the ratio of 1:1, the dead zone is less than those in other cases. On the other hands, in the ration of 3:1, the fine bubbles were more evenly distributed.

Treatment of Contaminated Groundwater Containing Petroleum and Suspended Solids Using DAF and Mixed Coagulation Processes (DAF와 혼화응집공정을 이용한 현탁성 고형물 함유 유류 오염 지하수 처리)

  • Lee, Chaeyoung;Jang, Yeongsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.25-32
    • /
    • 2010
  • Contamination of soil and groundwater by the compounds of hydrocarbon petroleum has been widely accepted as the main cause that harms the environments and health. To remove those pollutants, absorbing clothes, activated carbons, or oil-water separation devices with the gravity method are employed for treatment. However, those materials and devices cannot remove the emulsion pollutants despite of their efficiency for removing free products. Therefore, we investigated the problems which occur during the groundwater treatment for the highly concentrated suspended solid particles, which can be resulted from excavation, and to propose methods to remove TPH(Total Petroleum Hydrocarbon). After coagulation experiment with high molecular polymers, the concentration of SS(Suspended Solids) and COD(Chemical Oxygen Demand) turned to satisfy the groundwater quality criteria within 5 minutes while the concentration of TPH failed to meet the water quality standard of effluent. Consequently, the water quality criteria for effluent could not be met by single DAF(Dissolved Air Flotation) process. However all water quality criteria could be satisfied after 20 minutes when coagulation reactions are carried out simultaneously in the DAF reactor.

Optimum Operating Condition for Micro-Filtration Process as a Seawater Desalination Pretreatment (해수담수화 전처리로서 가압식 MF 공정의 최적 운전조건 도출)

  • Kim, Youngmin;Jang, Jung-Woo;Kim, Jin-Ho;Choi, June-Seok;Lee, Sangho;Kim, Sukwi
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.9
    • /
    • pp.624-629
    • /
    • 2013
  • The relation between performance maintenance conditions and those cost efficiency was studied to choose an optimum operating condition in the seawater desalination pretreatment system. A hollow fiber microfiltration module, which was developed with domestic technology, was tested with the various operating conditions such as chemically enhanced backwash cycles and design dosages of a cleaning chemical. Transmembrane pressure was measured to investigate membrane fouling status and cleaning degree. In addition, economic analysis was performed to compare water production costs by the operation condition. As a result, The operation mode III, chemically enhanced backwash at once a day with 100 mg/L of sodium hypochlorite (NaOCl) was selected. The concurrent evaluation between membrane filtration performance and its economic analysis will be suitable to choose an efficient optimum condition.

Effect of Coagulants and Separation Methods on Algal Removal in Water Treatment Process (정수처리에서 응집제 종류와 분리공정이 조류 제거에 미치는 영향)

  • Park, Hung-Suck;Lee, Sang-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.279-289
    • /
    • 2000
  • The objective of this study was to investigate the effect of coagulants and solid-liquid separation methods on algal removal in water treatment processes. Thus characterization of raw water quality in terms of turbidity. UV-254, $KMnO_4$ consumption, chlorophyll-a and correlation analysis of these parameters were conducted. In addition, the effect of commercial Al-based coagulants(Alum. PAC and PACS) on algal removal was studied by turbidity and organic removal, algal species removal, characteristic of pH drop and alkalinity consumption using laboratory jar tests. Organic components including UV-254, $KMnO_4$ consumption, chlorophyll-a in case of algal bloom were highly correlated with turbidity and the correlation coefficients of UV-254, $KMnO_4$ consumption, chlorophyll-a with turbidity were 0.775, 0674 and 0.623, respectively. In coagulation and sedimentation, the Al-based coagulants showed similar efficiency of organic and turbidity removal in low organic($KMnO_4$ consumption below 15mg/l) and low turbidity(below 30NTU). However, PAC and PACS showed better algal removal than alum in high organic concentration($KMnO_4$ consumption above 20mg/l) and high turbidity(above 100NTU) raw water conditions generated by high algal growth, which is considered to be due to the floc settleability. In comparison of sedimentation and flotation after chemical coagulation and flocculation, the removal efficiency of organic and turbidity were higher in case of alum dose with flotation than with sedimentation, while those were better in case or PAC and PACS with sedimentation than with flotation. Thus, Alum with flotation and PAC and PACS with sedimentation is recommended for efficient algal removal. The dominant phytoplankton in raw water were Microcystic and pediastrum simplex and the removal efficiency of algae with sedimentation using alum. PAC and PACS were 27%, 45% and 22% respectively, while those with DAF showed 100% removal of phytoplankton and zooplankton.

  • PDF