• Title/Summary/Keyword: 용접 잔류 응력

Search Result 500, Processing Time 0.02 seconds

Finite Element Analysis of Straight Slot Welding and Characteristics of the Weld Residual Stress Distribution (직선 Slot 용접의 유한요소해석 및 용접잔류응력 분포특성)

  • Park, Chi-Yong;Lee, Kyoung-Soo;Kim, Maan-Won;Song, Ki-Oh
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1311-1316
    • /
    • 2010
  • In this study, straight slot welding was carried out using a 316L stainless steel test block, and numerical simulation of the slot weld process was performed using finite element analysis. Data on the residual stress were obtained at equally spaced points on the top surface of the test block along directions parallel and perpendicular to the welding direction. After electrolytic polishing of the top surface of the block, the residual stress was measured by the X-ray diffraction method. The calculated weld residual stresses were compared with the measured data, and they were in good agreement with the data. The weld residual stress distribution inside the plate was determined from the results of finite element analysis, and the characteristics of the distribution were discussed in detail in this paper.

용접잔류 응력과 용접변형의 발생機構와 그 대책

  • 김영식
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.17-27
    • /
    • 1989
  • 용접에 이와 같이 발생하는 용접잔류응력과 변형은 용접구조물의 제작시 여러 가지 장해를 유발 할 뿐만 아니고 그 구조물의 사용중에 있어서도 파괴의 발생 또는 파괴의 전파에 직.간접적으로 기여하여 악영향을 끼치게 된다. 용접잔류응력은 용접구조물의 피로감도를 저하시키거나, 취성균 열 및 응력부식균열의 진전을 용이하게 하며 용접변형은 구조물의 외관을 해치거나 국부적으로 스트레인집중을 초래하여 이 역시 취성파괴의 원인으로 작용하여 구조물의 파괴사고를 유발할 위험성을 내포하고 있다. 따라서 용접변형과 잔류응력을 극도화하기 위한 대책은 용접기술자로 서 용접시공시 유의해야 할 가장 큰 사항의 하나라고 할 수 있다. 보고에서는 이러한 용접변형 과 잔류응력현상에 대해 그 발생기구를 금속학적 측면에서 고찰하고 그 경감대책에 대해서는 구 조물의 형상이나 종류에 따라 각각별개의 대책이 수립되어야 하나 여기서는 보편적인 경우에 한 해 해설하고저 한다.

  • PDF

Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths (보수용접부 폭에 따른 용접잔류응력의 변화 및 재분배 거동 평가)

  • Park, Chi-Yong;Lee, Hwee-Sueng;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.177-184
    • /
    • 2014
  • In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding.

Effect of Similar Metal Weld & Preemptive Weld Overlay On Residual Stress of Repair Weldment In Surge Nozzle (고리 원전 밀림관 노즐의 동종용접과 예방용접 Overlay가 보수용접 잔류응력에 미치는 영향)

  • Oh, Chang-Young;Song, Tae-Kwang;Shim, Kwang-Bo;Kim, Ji-Soo;Kim, Yun-Jae;Lee, Kyung-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.557-564
    • /
    • 2009
  • Welding residual stress is occurred after welding process. Tensile residual stress is one factor of PWSCC. Repair welding usually happened during the manufacturing welding process. Repair welds cause strong tensile residual stress. In PWR, Repair weldments made by Alloy 82/182 is susceptible to PWSCC caused by tensile stress, material and environment. Therefore, mitigation of welding residual stress in weldments is important for reliable operating. PWOL is one of the methods for mitigation and verified for over twenty years. In this paper, residual stress distribution of repaired weldments and the effect of PWOL on mitigation is examined for surge nozzle.

Distribution Characteristics of Weld Residual Stress on Butt Welded Dissimilar Metal Plate (이종금속 평판 맞대기용접의 용접잔류응력 분포특성)

  • Lee, Kyoung-Soo;Park, Chi-Yong;Kim, Maan-Won;Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1317-1323
    • /
    • 2010
  • In this study, the weld residual stress distribution at a dissimilar-metal welded plate of low alloy carbon steel and stainless steel, which are widely used in nuclear power plants, was characterized. A plate mock-up with butt welding was fabricated using SA 508 low alloy steel and Type 304 stainless steel plates and the residual stresses were measured by the X-ray diffraction method after electrolytic polishing of the plate specimen. Finite element analysis was carried out in order to simulate the butt welding of dissimilar metal plate, and the calculated weld residual stress distribution was compared with that obtained from the measured data. The characteristics of the three-dimensional residual stress distribution in a butt weld of dissimilar metal plates were investigated by comparing the measured and calculated residual stress data.

Residual Stress Measurement of Flat Welded Specimen by Electronic Speckle Pattern Interferometry (전자처리스페클패턴 간섭법을 이용한 평판 용접시험편의 잔류응력 측정)

  • Chang, Ho-Seob;Kim, Dong-Soo;Jung, Hyun-Chul;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • The size and distribution of welding residual stress and welding deformation in welding structures have an effect on various sorts of damage like brittle failure, fatigue failure and stress corrosion cracking. So, research for this problem is necessary continuously. In this study, non-destructive technique using laser electronic speckle pattern interferometry, plate of welding specimen according to the external load on the entire behavior of residual stress are presented measurement techniques. Once, welding specimen force tensile loading, using electronic speckle pattern interferometry is measured. welding specimen of base metal and weld zone measure strain from measured result, this using measure elastic modulus. In this study, electronic speckle pattern interferometry use weld zone and base metal parts of the strain differences using were presented in residual stress calculated value, This residual stress value were calculated by numerical calculation. Consequently, weld zone of modulus high approximately 3.7 fold beside base metal and this measured approximately 8.46 MPa.

Production Mechanism of Residual Stress Generated by Multi-Pass Welding of the steel Pipe (강관 적층용접부 잔류응력의 생성기구)

  • Chang, Kyong Ho;Yang, Sung Chul;Kang, Jae Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.327-335
    • /
    • 2001
  • The characteristics and production mechanism of residual stress generated by multi-pass welding of the steel pipe were elucidated from the results of three-dimensional thermal elastic-plastic FEM analysis. When the steel pipe was jointed by multi-pass welding, the stress components of circumferential direction and radial direction near welded joints on the inner surface and the outer surface of the pope were tensile. The stress component of axial direction on the inner surface was tensile and on the outer surface was compressive. On the other hands, the production mechanism of residual stress generated by multi-pass welding of the steel pipe was investigated. Residual stress generated by welding of the steel pipe was investigated not only by the thermal history but also by geometrical shape. Then, the generality of the production mechanism of residual stress generated by multi-pass welding was confirmed.

  • PDF

Welding Residual Stress Distributions for Dissimilar Metal Nozzle Butt Welds in Pressurized Water Reactors (가압경수로 노즐 맞대기 이종금속용접부의 용접잔류응력 예측)

  • Kim, Ji-Soo;Kim, Ju-Hee;Bae, Hong-Yeol;Oh, Chang-Young;Kim, Yun-Jae;Lee, Kyung-Soo;Song, Tae-Kwang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.137-148
    • /
    • 2012
  • In pressurized water nuclear reactors, dissimilar metal welds are susceptible to primary water stress corrosion cracking. To access this problem, accurate estimation of welding residual stresses is important. This paper provides general welding residual stress profiles in dissimilar metal nozzle butt welds using finite element analysis. By introducing a simplified shape for dissimilar metal nozzle butt welds, changes in the welding residual stress distribution can be seen using a geometry variable. Based on the results, a welding residual stress profile for dissimilar metal nozzle butt welds is proposed that modifies the existing welding residual stress profile for austenitic pipe butt welds.

Characteristics of Residual Stress in welds Composed of Similar or Dissimilar Steels (동종강재 및 이종강재 용접접합부의 잔류응력 특징)

  • Chang, kyong Ho;Lee, Chin Hyung;Lee, Sang Hyong;Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.241-250
    • /
    • 2003
  • This study, investigated the characteristics of residual stress in weldis composed of similar or dissimilar steels, are investigated byusing 3three-dimensional thermal elasto-plastic FEM analysis. The results showed that for the groove welding of the similar steels, increasedthetensile strength of the steels (POSTEN60

Residual Stress in Welds of High Strength Steel( POSTEN60, POSTEN80) (고강도강(POSTEN60, POSTEN80) 용접접합부의 잔류응력)

  • Chang, Kyong Ho;Lee, Chin Hyung
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.519-528
    • /
    • 2004
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. And it is well known that volume expansion due to phase transformation could influence in the case of welding of high tensile strength steels on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. In this study, we investigated the effect of phase transformation on the relaxation of welding residual stress through experiment. And three-dimensional thermal elastic-plastic FEM analysis is conducted to reproduce the effect of phase transformation on the relaxation of welding residual stress. Also we carried out the analysis of welding residual stress in welds of similar or dissimilar steels considering the effect of residual stress relaxation due to phase transformation.