• 제목/요약/키워드: 용접 비드

검색결과 240건 처리시간 0.029초

GMA 용접에 온도분포와 비드형상에 관한 연구 (A Study on Temperature Distribution and Bead Geometry in GMA Welding)

  • 김일수;박창언;송창재;정영재;김동규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 춘계학술대회 논문집
    • /
    • pp.111-116
    • /
    • 1999
  • Over the last few years, there has been a growing interest in quantitative representation of heat transfer and fluid flow phenomena in weld pools in order to relate the processing conditions to the quality of the weldment produced and to use this information for the optimization and robotization of the welding process. Normally, a theoretical model offers a powerful alternative to estimate the important input parameters and to calculate the effects of varying any of parameters. To solve this problem, a transient 2D(two-dimensional) heat conduction and a transient 2D axisymmetric heat and fluid model were developed for determining weld bead geometry and temperature distribution for the GMA(Gas Metal Arc) welding process. The equation was solved using a general thermofluid-mechanics computer program, PHOENICS code, which is based on the SIMPLE algorithm. The simulation results showed that the calculated bead geometry from two developed models reasonably agree with the experiment result.

  • PDF

제관용 Sl7C의 소재온도에 따른 가공성 평가 (Machinability Evaluation of Sl7C Steel according to Workpiece Temperature)

  • 정영훈;김전하;강명창;김정석;김정근
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.493-497
    • /
    • 2002
  • In the part industry, pipe has required high accuracy in surface roughness and size. Especially, when producing the high frequency welding pipe, cutting process is very important as the finishing process that remove the hot welding bead. The objective of this paper is to investigate the hot machining high frequency welded pipe by simulation and experimental tests. To test the cutting process as hot machining, all cutting environment is reproduced in turning with heating system, and the test is accomplished by comparing with room temperature machining and hot machining in consideration of cutting force, tool wear and cutting temperature.

  • PDF

하드페이싱 오버레이용접 비드형상에 미치는 GMA 용접조건의 영향 (Effects of GMA Welding Conditions on the Bead Shape of Hardfacing Overlay Welding)

  • 한규호;김준기;김철희;김정한;남시환;전치중
    • Journal of Welding and Joining
    • /
    • 제25권5호
    • /
    • pp.58-63
    • /
    • 2007
  • The relationship between GMA welding conditions and the bead shape of overlay weld was studied by using ${\Phi}1.6mm$ hypo-eutectic metal-cored wire designed for hardfacing against the severe metal-to-metal wear. As the welding voltage increased, the dilution also increased but the sudden drop of dilution was observed at $30{\sim}33V$. It was considered to be due to the decrease of penetration resulting from the change of transfer mode, from short circuit to spray. It was also found that the behavior of penetration with welding current was dependant on the transfer mode. The short circuit mode exerted the penetration to decrease while the spray mode did it to increase with increase of welding current. The former was considered to be responsible for the remarkable decrease in dilution at low welding voltage region. The change of transfer mode also had an effect on the behavior of bead width with welding current but it did not on the bead spreadability defined as W/H ratio. It was considered that the optimal welding conditions for multi-pass overlay welding could be obtained from the bead spreadability suitable for bead lapping and the dilution as low as possible in the spray transfer mode.

적외선센서를 이용한 용접품질 제어에 관한 연구 (A Study on the Control of the Welding Quality Using a Infrared sensor)

  • 김일수;손준식;김학형;서주환;김인주
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.754-758
    • /
    • 2005
  • Optimization of process variables such as arc current, welding voltage and welding speed in terms of the weld characteristics desired is the key step in achieving high quality and improving performance characteristics without increasing the cost. Consequently, incorrect settings of those process variables give rise to deviations in the welding characteristics from the desired bead geometry. Therefore, trainee welders are referred to the tabulated information relating different metal types and thickness as to recommend the desired values of process variables. Basically, the bead geometry plays an important role in determining the mechanical properties of the weld. So that it is very important to select the process variables for obtaining optimal bead geometry. However, it is difficult for the traditional identification methods to provide an accurate model because the optimized welding process is non-linear and time-dependent. In this paper, the possibilities of the Infra-red sensor in sensing and control of the bead geometry in the automated welding process are presented. Infra-red sensor is a well-known method to deal with the problems with a high degree of fuzziness so that the sensor is employed to build the relationship between process variables and the quality characteristic the proposed above respectively. Based on several neural networks, the mathematical models are derived from extensive experiments with different welding parameters and complex geometrical features. The developed system enables to select the optimal welding parameters and control the desired weld dimensions during arc welding process.

  • PDF

FCAW의 혼합가스 변화에 따른 용접 모니터링과 특성에 관한 연구 (Study of the welding monitor and characteristics according to a change in Gas mixture by FCAW)

  • 임병철;강철순;박상흡
    • 한국산학기술학회논문지
    • /
    • 제15권10호
    • /
    • pp.5933-5938
    • /
    • 2014
  • 본 연구에서는 Atos 60의 시험편에 혼합가스의 변화에 따른 FCA용접을 하였고, 용접특성 분석 위하여 용접공정상의 실시간 모니터링 시스템과 용접 후 기계적 성질을 평가 하였다. Ar 80%+$CO_2$ 20% 혼합하고 낮은 속도로 용접한 경우 가장 미려한 비드와 스패터 발생이 적게 나타났으며, 반면 $CO_2$ 100%인 경우 스패터가 많이 발생하는 것을 확인하였다. 정상단락이 발생하는 저전류 영역으로 혼합가스의 사용에 대한 스패터 발생을 확인 할수 있는 조건이며, $CO_2$ 100%인 경우 각층의 단락율은 약 2배 이상 높았고, Peak의 분포가 많은 아크의 불안정 상태로 나타났다. 인장시험결과 Ar 80%+$CO_2$ 20%, Ar 90%+$CO_2$ 10%, $CO_2$ 100%의 항복강도는 각각 511MPa, 507MPa, 469MPa 이었으며, $CO_2$ 100%의 항복강도 보다 각각 약 8.9% 8.1% 향상되었다. 인장강도는 각각 622MPa, 609MPa, 581MPa로 $CO_2$ 100%의 인장강도 보다 각각 약 7.0%, 4.8% 향상되었다.

$CO_2$ 자동용접의 공정변수와 표면 비드폭의 상관관계에 관한 민감도 분석 (Sensitivity Analysis to Relationship Between Process Parameter and Top-bead with in an Automatic $CO_2$ Welding)

  • 서주환;김일수;김인주;손준식;김학형
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1845-1848
    • /
    • 2005
  • The automatic $CO_2$ welding is a manufacturing process to produce high quality joints for metal and it could provide a capability of full automation to enhance productivity. Despite the widespread use in the various manufacturing industries, the full automation of the robotic $CO_2$ welding has not yet been achieved partly because the mathematical model for the process parameters of a given welding task is not fully understood and quantified. Several mathematical models to control welding quality, productivity, microstructure and weld properties in arc welding processes have been studied. However, it is not an easy task to apply them to the various practical situations because the relationship between the process parameters and the bead geometry is non-linear and also they are usually dependent on the specific experimental results. Practically, it is difficult, but important to know how to establish a mathematical model that can predict the result of the actual welding process and how to select the optimum welding condition under a certain constraint. In this research, an attempt has been made to develop an intelligent algorithm to predict the weld geometry (top-bead width, top-bead height, back-bead width and back-bead height) as a function of key process parameters in the robotic $CO_2$welding. A sensitivity analysis has been conducted and compared the relative impact of three process parameters on bead geometry in order to verify the measurement errors on the values of the uncertainty in estimated parameters.

  • PDF

U리브 현장용접이음부 응력거동에 관한 연구 (Analysis of Stress Behavior on Field Welded Joints of U-rib in Steel Bridge)

  • 강창입;최성민;국승규;이동욱
    • 한국강구조학회 논문집
    • /
    • 제16권3호통권70호
    • /
    • pp.387-396
    • /
    • 2004
  • 본 연구에서는 강교량의 강상판에서 많이 사용되는 U리브 현장이음부에 대해 시공오차로 인한 단차의 영향을 조사하기 위해 실물 대모형에 대해 응력해석을 실시하였다. 또한 실물대모형 시험체를 제작하여 3점 휨 피로실험을 실시하였으며, 주사형전자현미경(SEM) 및 비치마크를 이용하여 피로균열 발생점 및 피로균열전파방향을 조사하였다. 실물대모형 모델에 대한 응력해석 결과, U리브의 하면 우각부에 응력이 크게 나타났으며, 단차가 커질수록 응력이 현저히 증가하는 것을 확인할 수 있었다. 실물대모형 시험체에 대한 정하중 및 피로실험에서도 U리브 하면의 우각부에 응력이 크게 나타났으며, 단차가 크면 피로수명은 단축되고 단차가 적으면 피로수명은 길어졌다. 또한 파단면 조사결과, 피로균열은 모재측 루트부에서 발생하여 용접비드 표면측으로 전파되었다.

유전자 알고리즘을 이용한 GMA 필릿 용접 비드형상 예측에 관한 연구 (A Study on Bead Geometry Prediction the GMA Fillet Welding using Genetic Algorithm)

  • 김영수;김일수;이지혜;정성명;이종표;박민호
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.126-132
    • /
    • 2012
  • The GMA welding process involves large number of interdependent variables which may affect product quality, productivity and cost effectiveness. The relationships between process parameters for a fillet joint and bead geometry are complex because a number of process parameters are involved. To make the automated GMA welding, a method that predicts bead geometry and accomplishes the desired mechanical properties of the weldment should be developed. The developed method should also cover a wide range of material thicknesses and be applicable for all welding position. For the automatic welding system, the data must be available in the form of mathematical equations. In this study a new intelligent model with genetic algorithm has been proposed to investigate interrelationships between welding parameters and bead geometry for the automated GMA welding process. Through the developed model, the correlation between process parameters and bead geometry obtained from the actual experimental results, predicts that data did not show much of a difference, which means that it is quite suitable for the developed genetic algorithm. Progress to be able to control the process parameters in order to obtain the desired bead shape, as well as the systematic study of the genetic algorithm was developed on the basis of the data obtained through the experiments in this study can be applied. In addition, the developed genetic algorithm has the ability to predict the bead shape of the experimental results with satisfactory accuracy.

탄템 GMA 용접공정의 표면비드높이 예측을 위한 STACO모델 개발에 관한 연구 (A Study on Development of STACO Model to Predict Bead Height in Tandem GMA Welding Process)

  • 이종표;김일수;박민호;박철균;강봉용;심지연
    • Journal of Welding and Joining
    • /
    • 제32권6호
    • /
    • pp.8-13
    • /
    • 2014
  • One of the main challenges of the automatic arc welding process which has been widely used in various constructions such as steel structures, bridges, autos, motorcycles, construction machinery, ships, offshore structures, pressure vessels, and pipelines is to create specific welding knowledge and techniques with high quality and productivity of the production-based industry. Commercially available automated arc welding systems use simple control techniques that focus on linear system models with a small subset of the larger set of welding parameters, thereby limiting the number of applications that can be automated. However, the correlations of welding parameters and bead geometry as welding quality have mostly been linked by a trial and error method to adjust the welding parameters. In addition, the systematic correlation between these parameters have not been identified yet. To solve such problems, a new or modified models to determine the welding parameters for tandem GMA (Gas Metal Arc) welding process is required. In this study, A new predictive model called STACO model, has been proposed. Based on the experimental results, STACO model was developed with the help of a standard statistical package program, MINITAB software and MATLAB software. Cross-comparative analysis has been applied to verify the reliability of the developed model.

위보기 및 경사상진자세의 TIG 용접에서 비드 성형기의 물리적 힘에 의한 용융지 제어 (Control of Molten Pool by Physical Force of Bead Former in TIG Welding of Overhead and Inclined-up Position)

  • 함효식;하종문;이병우;조상명
    • Journal of Welding and Joining
    • /
    • 제28권6호
    • /
    • pp.21-27
    • /
    • 2010
  • Due to excellent weld quality, orbital welding with TIG is widely applied to pipe welding. But concave back bead is formed easily in overhead and inclined-up position of butt orbital welding. It is difficult to find a paper to overcome this problem. In this study, in order to make convex back bead in overhead and inclined-up position of pipe 5G welding, control method of molten pool was actively investigated. Melt run welds were conducted on thickness 4.0mm SS400 with overhead and inclined-up position and was observed the variation of bead shape after welding with the bead former developed. The height of back bead showed the trend of increase as the distance from molten pool to the bead former was decreased. Also, there is no trend in the bead width of front and back as welding position was changed or the distance from molten pool to the bead former was decreased.