• Title/Summary/Keyword: 용접접근공

Search Result 13, Processing Time 0.019 seconds

Evaluating Seismic Performance of Steel Welded Moment Connections Fabricated with SN Steel (SN 강재가 사용된 강구조 용접모멘트접합부의 내진성능 평가)

  • Oh, Sang-Hoon;Choi, Young-Jae;Yoon, Sung-Kee;Lee, Dong-Gue
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.271-280
    • /
    • 2010
  • This study was programmed to fabricate a beam-to-column connection that is limited to a steel-welded moment connection with full-scale members, using SN steel. A cyclic seismic test was conducted of the nine specimens that were fabricated by choosing the test variable for the weld access hole geometry, connection design method, and RBS. From the test results, failure modes, the moment-drift behavior, and the strain distribution were provided. From the specimen material properties, the beam's nominal plastic flexural capacity and classified qualified connection as a special moment flame were calculated. By analyzing the skeleton part and the baushinger part, a range of strength-raising effects, and deformation ratios were provided, with which the seismic performance of the specimens were evaluated. The test results showed that the specimens eliminated their weld access holes that demonstrated higher seismic performance than the specimens' existing weld access holes, and that the WUF-W connection that was reinforced by the supplemental fillet weld around the shear tap that was fastened by five bolts demonstrated superior seismic performance.

Mesh Independent 3-D Modeling of Spot Welded Joints using Finite Elements with Embedded Strong Discontinuities (강한 불연속이 내장된 유한요소를 이용한 스폿 용접 접합의 망 독립적 삼차원 모델링)

  • Kim, Jongheon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.4
    • /
    • pp.283-288
    • /
    • 2017
  • A spot welded joint is modeled using 3-D finite elements with embedded strong discontinuities. The spot weld is represented by a special cohesive law on the embedded discontinuity surface, instead of meshing its geometry. This strategy naturally eliminates the need of adaptive FEM meshes fitting the local geometry of the spot weld. Mesh independent solutions are guaranteed by explicitly modeling the detailed shape of the spot weld, which is in contrast with the exiting approach using point constraints for the spot weld.

A Study on Deformation Capacity of High Strength Steel Beam-to-Column Connections According to Welding Detail at Beam End (보 단부 용접상세에 따른 고강도강 기둥-보 접합부의 변형능력에 관한 연구)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.335-348
    • /
    • 2014
  • For high-strength steel, it is difficult to be applied to flexible structural member because it have high yield ratio and low basic material's toughness. One of the great problems when using high-strength steel connections is the brittle fracture at the end of the beam member in common with general mild steel connections. In the cases of mild steel connections, it has be developed that special moment frame connection details by reinforcing structural member or improvement of welding access hole. But, it is incomplete at yet about applicability estimation of high-strength steel connections. This study is the initial step research for the applicability estimation of beam-to-column connections being applied to developed high-strength steel, HSA800. And, it studied about structural performance of the high-strength steel connections according to the details of welding access hole through full-scale test and analytical method.

소형 선박용 알루미늄 압출 구조부재 제작 기법 연구

  • Jo, Je-Hyeong;Sim, Sang-Mok;Kim, Heon-U;Sin, Il-Sik;Yang, Beom-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.22-24
    • /
    • 2007
  • 최근 소형선박의 선체 재료로써 기존의 FRP선이 갖는 환경문제와 자원의 재활용 및 선체중량경감의 측면에서 소형선박을 중심으로 알루미늄선으로의 전환이 이루어져 왔지만, 알루미늄에 대한 용접 기능공 및 기술이 부족하여 건조 공정에 많은 시간과 비용이 소요되어 중소조선소에선 알루미늄선체 건조에 많은 애로 점을 가지고 있다. 이에, 본 연구를 통해 알루미늄선체의 구조부재 제작시 용접에 의한 공정을 압출성형 기법으로 대체하고 알루미늄선체의 용접에 소요되는 높은 인건비와 시간을 절약하여 원가 절감의 효과를 도모하며 또한 알루미늄선박 일체형 구조부재의 경량화 기법과 한국선급의 알루미늄선체 강도 기준을 적용하여 표준화된 구조부재의 압출성형 기법을 정립하고자 한다.

  • PDF

Cycllic Seismic Testing of Full-Scale RBS (Reduced Beam Section) Steel Moment Connections (RBS 철골모멘트접합부의 내진거동평가를 위한 반복재하 실물대(實物大) 시험)

  • Lee, Cheol Ho;Jeon, Sang Woo;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.4
    • /
    • pp.557-566
    • /
    • 2002
  • This paper summarized the results of a full-scale cyclic seismic testing on four reduced beam section (RBS) steel moment connections. Specifically, these tests addressed a bolted web versus a welded web connection and strong versus medium panel zone (PZ) strength as key test variables. Specimens with medium PZ strength were designed to promote balanced energy dissipation from both PZ and RBS regions, in order to reduce the requirement for expensive doubler plates. Both strong and medium PZ specimens with welded web connection were able to provide sufficient connection rotation capacity required of special moment-resisting frames. On the other hand, specimens with bolted web connection performed poorly due to premature brittle fracture of the beam flange at the weld access hole. Unlike the case of web-welded specimens, specimens with cheaper bolted web connection could not transfer the actual plastic moment of the original (or unreduced) beam section to the column. No fracture occurred within the beam groove welds of any connection in this testing program. If fracture within the beam flange groove weld is avoided by using quality welding procedure as in this study, the fracture issue tends to move into the beam flange base metal at the weld access hole. Supporting analytical study was also conducted in order to understand the observed base metal fracture from the engineering mechanics perspective.

Analytical Approach on the Concrete Columns with Welded Reinforcement Grids (격자형 용접 띠철근으로 보강된 콘크리트 기둥의 해석적 접근)

  • Choi, Chang Sik;Murat, Saatcioglu;Mongi, Grira
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.1
    • /
    • pp.137-146
    • /
    • 1999
  • Analysis of R/C columns requires modeling of the plastic hinge region, as well as nonlinear material characteristics. This becomes a challenging task in view of the nonlinearity of both steel and concrete. Furthermore, formation and progression of plasticity in the hinge is a difficult phenomenan to simulate, especially under reversed cyclic loading and decaying strength conditions. This research provide one analytical model employed in column analysis, including the analysis procedure for establishing inelastic force-deformation relationships. The analytical results show good correlation with experimental data. The employed procedure with the adopted analytical models can be used to compute inelastic displacements of concrete columns with welded reinforcement grids. The inelastic deformability beyond the peak was similar to those indicated by columns with conventional ties. The superior performance of columns with welded grids may be attributed to the improved confinement characteristics of grids associated with increased rigidity of welded ties.

  • PDF

Cyclic Seismic Performance of RBS Weak-Axis Welded Moment Connections (RBS 약축 용접모멘트접합부의 내진성능 평가)

  • Lee, Cheol Ho;Jung, Jong Hyun;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.513-523
    • /
    • 2015
  • In steel moment frames constructed of H-shapes, strong-axis moment connections should be used for maximum structural efficiency if possible. And most of cyclic seismic testing, domestic and international, has been conducted for strong-axis moment connections and cyclic test data for weak-axis connections is quite limited. However, when perpendicular moment frames meet, weak-axis moment connections are also needed at the intersecting locations. Especially, both strong- and weak-axis moment connections have been frequently used in domestic practice. In this study, cyclic seismic performance of RBS (reduced beam section) weak-axis welded moment connections was experimentally investigated. Test specimens, designed according to the procedure proposed by Gilton and Uang (2002), performed well and developed an excellent plastic rotation capacity of 0.03 rad or higher, although a simplified sizing procedure for attaching the beam web to the shear plate in the form of C-shaped fillet weld was used. The test results of this study showed that the sharp corner of C-shaped fillet weld tends to be the origin of crack propagation due to stress concentration there and needs to be trimmed for the better weld shape. Different from strong-axis moment connections, due to the presence of weld access hole, a kind of CJP butt joint is formed between the beam flange and the horizontal continuity plate in weak-axis moment connections. When weld access hole is large, this butt joint can experience cyclic local buckling and subsequent low cycle fatigue fracture as observed in this testing program. Thus the size of web access hole at the butt joint should be minimized if possible. The recommended seismic detailing such as stickout, trimming, and thicker continuity plate for construction tolerance should be followed for design and fabrication of weak-axis welded moment connections.

3D Semi-elliptical Interfacial Crack Front Stress Fields in Welded Joints (용접부 3차원 반타원 계면균열선단에서의 응력장)

  • 최호승;이형일;송원근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.649-659
    • /
    • 2002
  • For a variety of elastic-plastic stress fields of plane strain specimens, many research works verified the validity of J-T approach. To generalize the validity of J-T method, however, further investigations are needed for more practical 3D structures than the idealized geometries as plane strain specimens. In this work, selecting two main types of structures such as plate and straight pipe, we perform 3D finite element(FE) modeling, and accompanying elastic, elastic-plastic FE analyses. We then study the validity of J-T application to 3D structures, and present some useful informations for the design or assessment of pipe welds by comparing the stress fields from the detailed 3D FE analyses to those predicted with J-T two parameters.

Cyclic Loading Test on Connection of SRC Column-Composite Beam Consisting of H-Section and U-Section Members (SRC기둥-H형단면과 U형단면으로 구성된 합성보 접합부의 반복가력실험)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Kim, Jin Won;Ryu, Hong Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.263-275
    • /
    • 2014
  • In this study, connection of steel reinforced concrete(SRC) column and composite beam which consists of H-section and U-section members were tested under cyclic loading. An essential point of the composite beam is the structural performance of welded joint between the H-section and the U-section members. To improve the structural performance of joint of two beam members, vertical stiffeners, trapezoidal stiffeners, and top bars were used. Five full-scaled specimens were designed to study the effect of a number of parameters on cyclic performance of connections such as H-section beam size($H-500{\times}200{\times}10{\times}16$, $H-600{\times}200{\times}11{\times}17$), the presence of stiffeners and top bars, and the presence of no weld access hole(WAH) method. Based on the test results, deformation capacity of the specimens with H-500 series beam and H-600 series beam were 4% and 3% rotation angle, which is the requirement for the Special Moment Frame and Intermediate Moment Frame(IMF), respectively. Test result showed that deformation capacity of connection with stiffeners and top bars is greater than that of connection without stiffeners and top bars. Finally, energy dissipation capacity and strain profile of specimens were summarized.